Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (11): 1316-1324    DOI: 10.16511/j.cnki.qhdxxb.2020.26.041
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
三维线激光国际平整度指数计算原理及测试评估
呙润华1, 徐粒2, 彭慧婷2, 曹志坚1, 耿靖杰2
1. 清华大学 土木工程系, 北京 100084;
2. 新疆大学 建筑工程学院, 乌鲁木齐 830047
Pavement roughness index measurements with a 3D line laser
GUO Runhua1, XU Li2, PENG Huiting2, CAO Zhijian1, GENG Jingjie2
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. College of Construction Engineering, Xinjiang University, Urumqi 830047, China
全文: PDF(11749 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文介绍了三维线激光轮廓仪纵向布置架构及工作原理,开发了基于线激光的移动参考算法,可用于20~100 km/h时速下连续获取道面纵向轮廓线,设备布置于左右轮迹带,线激光调查长度为270 mm,垂直精度达0.01 mm。通过该调查系统获取了2段不同质量状况沥青路面轮廓高程并用于计算10、100 m步距国际平整度指数(international roughness index,IRI),测试结果表明:变速情况下获取的IRI值与手动测量相对误差不超过3%,低速情况下的左、右轮廓仪标准差不超过0.3,变速情况下不超过0.6;数字检测车在快速启动过程中导致的悬架上移以及受黄金车1/4车动力学响应模型初值影响,起始段约50 m的数据会出现失真现象,剔除起始段前50 m低质量数据后,右轮廓仪91.4%的数据变异系数小于5%,8.6%的数据变异系数小于15%,左轮廓仪94.2%的数据变异系数小于5%,5.8%的数据变异系数小于10%。其中1号和2号站点路段调查的IRI评价结果符合实际路面服役状况。综合测试结果表明:开发的动态检测系统在低速和变速情况下采集IRI数据质量良好,预计未来可以为区域化的网级路面服役状况评估提供有效技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
呙润华
徐粒
彭慧婷
曹志坚
耿靖杰
关键词 沥青路面国际平整度指数三维线激光移动参考算法变异系数    
Abstract:This paper describes the longitudinal layout and working principle of a 3D line laser profilometer with a moving reference algorithm based on the line laser design which can continuously measure the longitudinal contour of a track plane at 20~100 km/h. The device is placed on the left and right wheel track belts. The line laser survey path is 270 mm long and the vertical accuracy is 0.01 mm. The system was used to measure two sections of different quality asphalt pavement contours over distances of 10 m and 100 m to determine the international roughness index (IRI) for each section. The results show that the IRI at various speeds had a relative measurement error less than 3%. At low speeds, the left and right contour graph standard deviations were less than 0.3 and less than 0.6 at higher variable speeds. Measurements using a digital test vehicle gave poor results for quick starts with distorted data over the first 50 m. Thus, the initial values for the standard gold car model were taken from the first quarter of the dynamic response model results as the initial value. For the right contour graph, 91.4% of the data had coefficients of variation less than 5% and 8.6% of the coefficients of variation were less than 15%. For the left contour graph, 94.2% of the coefficients of variation were less than 5% and 5.8% of the coefficients of variation were less than 10%. The IRI results at sites 1 and 2 were in line with the actual service conditions of the road surfaces. The evaluations show that this dynamic monitoring system can accurately measure the IRI at both low speeds and variable speeds. This system can be used for pavement flatness surveys and pavement service status assessments.
Key wordsasphalt pavement    international roughness index    three-dimensional line laser    mobile reference algorithm    coefficient of variation
收稿日期: 2020-09-16      出版日期: 2021-10-19
基金资助:交通基础设施全自动数据采集及智能分析平台建设(20203910013)
引用本文:   
呙润华, 徐粒, 彭慧婷, 曹志坚, 耿靖杰. 三维线激光国际平整度指数计算原理及测试评估[J]. 清华大学学报(自然科学版), 2021, 61(11): 1316-1324.
GUO Runhua, XU Li, PENG Huiting, CAO Zhijian, GENG Jingjie. Pavement roughness index measurements with a 3D line laser. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1316-1324.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.041  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I11/1316
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] LOPRENCIPE G, CANTISANI G, DI MASCIO P. Global assessment method of road distresses[Z]. Tokyo:CRC Press, 2015.
[2] World Road Association. Report of the committee on surface characteristics[C] //XVIII World Road Congress, Brussels, Belgium, 1987.
[3] HANNA A N. Guide for pavement friction:Background and research[M]. Washington, DC:Nchrp Research Results Digest, 2009.
[4] SAYERS M, GILLESPIE T D, QUEIROZ C A. International experiment to establish correlation and standard calibration methods for road roughness measurements. Volume 2:Appendices[R]. New York:World Bank, 1986.
[5] American Association of State and Highway Transportation Officials. Standard practice for accepting pavement ride quality when measured using inertial profiling systems:AASHTO R 54-14[S]. Washington, DC:American Association of State and Highway Transportation Officials, 2014.
[6] SAYERS M W, KARAMIHAS S M. The little book of profiling:Basic information about measuring and interpreting road profiles[M]. Michigan:The Regent of the University of Michigan, 1998.
[7] YU J X, CHOU E Y J, YAU J T. Development of speed-related ride quality thresholds using international roughness index[J]. Transportation Research Record:Journal of the Transportation Research Board, 2006, 1974(1):47-53.
[8] XU X, AKBARIAN M, GREGORY J, et al. Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context[J]. Journal of Cleaner Production, 2019, 230:1156-1164.
[9] MA Y, ZHANG W H, LI S, et al. A rut measuring method based on laser triangulation with single camera[C] //Proceedings of SPIE 9044, 2013 International Conference on Optical Instruments and Technology. Beijing, China:SPIE, 2013.
[10] 常成利, 荣建, 任福田. 国际平整度指数的计算方法[J]. 北京工业大学学报, 2012(10):1543-1547. CHANG C l, RONG J, REN F T. The calculation method of international flatness index[J]. Journal of Beijing University of Technology, 2012(10):1543-1547. (in Chinese)
[11] 周晓青, 颜利, 孙立军. 国际平整度指数与路面功率谱密度相关关系研究及验证[J]. 土木工程学报, 2007, 40(1):99-104. ZHOU X Q, YAN L, SUN L J. Study and validation of the relationship between international roughness index and power spectral density[J]. China Civil Engineering Journal, 2007, 40(1):99-104. (in Chinese)
[12] 王大为, 王宠惠, STEINAUER B, 等. 德国不限速高速公路路面平整度评价方法综述[J]. 中国公路学报, 2019, 32(4):105-113, 129. WANG D W, WANG C H, STEINAUER B, et al. Overview on evaluation methods of pavement evenness for pavements without speed limitations in Germany[J]. China Journal of Highway and Transport, 2019, 32(4):105-113, 129. (in Chinese)
[13] 张德津, 李清泉. 公路路面快速检测技术发展综述[J]. 测绘地理信息, 2015, 40(1):1-8. ZHANG D J, LI Q Q. A review of pavement high speed detection technology[J]. Journal of Geomatics, 2015, 40(1):1-8. (in Chinese)
[14] CHOU C P, CHU H J, CHEN A C. Advanced runway groove identification[J]. Measurement, 2020, 152:107272.
[15] CAI Z X, LI L, HU Y P, et al. Automated groove identification and measurement using long short-term memory unit[J]. Measurement, 2019, 141:152-161.
[16] GROGG M G, SMITH K D. PCC pavement smoothness:Characteristics and best practices for construction[R]. Washington:Office of Acquisition Management, 2001.
[17] 马荣贵, 宋宏勋. 嵌入式激光路面平整度检测系统研究[J]. 武汉理工大学学报(交通科学与工程版), 2008, 32(5):826-829. MA R G, SONG H X. An embedded laser road roughness measurement system[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2008, 32(5):826-829. (in Chinese)
[18] 赵康, 丁磊, 王金洋. 双激光位移传感器测量路面平整度系统实现[J]. 汽车实用技术, 2012(5):61-64. ZHAO K, DING L, WANG J Y. Double laser displacement sensor measurement of pavement system[J]. Automobile Applied Technology, 2012(5):61-64. (in Chinese)
[19] 周游佳, 呙润华. 基于三维技术的道路综合检测车[J]. 公路工程, 2019, 44(3):61-64. ZHOU Y J, GUO R H. Road inspection vehicle based on 3D technology[J]. Highway Engineering, 2019, 44(3):61-64. (in Chinese)
[20] HE L Y, WU S S, WU C Y. Robust laser stripe extraction for three-dimensional reconstruction based on a cross-structured light sensor[J]. Applied Optics, 2017, 56(4):823-832.
[21] SAYERS M W. On the calculation of international roughness index from longitudinal road profile[J]. Transportation Research Record, 1995(1501):1-12.
[1] 徐粒, 呙润华, 彭慧婷, 施鹏程. 三维激光断面仪调查系统工作原理及其应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1202-1211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn