Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (6): 527-535    DOI: 10.16511/j.cnki.qhdxxb.2020.26.045
  防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
微博用户的应急预警信息传播行为研究
陈安滢1,2, 朱昊然1,2, 苏国锋1,2
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 城市综合应急科学北京市重点实验室, 北京 100084
Emergency warning information repost behavior of Weibo users
CHEN Anying1,2, ZHU Haoran1,2, SU Guofeng1,2
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of City Integrated Emergency Response Science, Beijing 100084, China
全文: PDF(3735 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以微博为代表的在线社交媒体在预警信息的传播中发挥着越来越重要的作用。该文以灾害应急预警信息为例,从用户的角度出发,分别从利益相关、理性思考和用户兴趣3个方面分析微博用户传播应急预警信息的动机。基于分析结果,提出以地域指数(突发事件是否和用户所在地域相关)和兴趣指数(用户平时转发微博的内容)作为特征变量对用户的预警转发行为进行预测。该预测模型预测正确率达到同类型研究水平,且具有可解释性。研究结果可以对用户转发行为进行快速预测和识别,有利于进行应急预警信息的定向投送,进一步扩大传播范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈安滢
朱昊然
苏国锋
关键词 预警信息地域分析情感分析兴趣分析行为预测    
Abstract:Online social networks, such as Sina Weibo, are playing increasingly important roles in disseminating early warning information. This paper uses disaster warning information as an example to analyze the motivation of users for spreading emergency warning information on Sina Weibo from the perspectives of interest correlation, rational thinking and user interest. The results show that a regional index and an interest index predict user warning information repost behavior. The prediction accuracy of this model is similar to related research and is interpretable. This research can predict and identify user repost behavior which can facilitate delivery of emergency warning information and expand the information spread.
Key wordswarning information    geographic analysis    emotional analysis    interest analysis    behavior prediction
收稿日期: 2020-08-27      出版日期: 2021-04-28
基金资助:科技部“十三五”重点研发计划(2018YFC0807000)
通讯作者: 苏国锋,研究员,E-mail:sugf@tsinghua.edu.cn      E-mail: sugf@tsinghua.edu.cn
作者简介: 陈安滢(1992-),女,博士研究生。
引用本文:   
陈安滢, 朱昊然, 苏国锋. 微博用户的应急预警信息传播行为研究[J]. 清华大学学报(自然科学版), 2021, 61(6): 527-535.
CHEN Anying, ZHU Haoran, SU Guofeng. Emergency warning information repost behavior of Weibo users. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 527-535.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.045  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I6/527
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] OLDALE A, OLDALE J, REENEN J V, et al. Collaborative filtering:WO/2002/010954[P]. 2002.
[2] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM SIGIR Forum, 2017:227-234.
[3] WALKER A E, RECKER M M, LAWLESS K, et al. Collaborative information filtering:A review and an educational application[J]. International Journal of Artificial Intelligence in Education, 2004, 14(1):3-28.
[4] PAN Y, CONG F, CHEN K, et al. Diffusion-aware personalized social update recommendation[C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York, USA:Association for Computing Machinery, 2013:69-76.
[5] 祖弦, 谢飞. LDA主题模型研究综述[J]. 合肥师范学院学报, 2015, 33(6):55-58, 61. ZU X, XIE F. An overview of LDA thematic model[J]. Journal of Hefei Normal University, 2015, 33(6):55-58, 61. (in Chinese)
[6] XU Z, ZHANG Y, WU Y, et al. Modeling user posting behavior on social media[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:Association for Computing Machinery, 2012:545-554.
[7] 陈楠. 关系类型和信息类型对社交网络用户转发意愿的影响研究-基于权力距离和大五人格调节效应的分析[D]. 北京:北京邮电大学, 2017. CHEN N. Research on the influence of relationship types and information types on social network users' reposting willingness-Based on the analysis of power distance and the moderating effect of big five personality[D]. Beijing:Beijing University of Posts and Telecommunications, 2017. (in Chinese)
[8] BIAN J W, YANG Y, TAT-SENG C. Predicting trending messages and diffusion participants in microblogging network[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York, USA:Association for Computing Machinery, 2014:537-546.
[9] LI Y L, YU H T, LIU L X. Predict algorithm of micro-blog retweet scale based on SVM[J]. Application Research of Computers, 2013, 30(9):2594-2597.
[10] 刘玮, 贺敏, 王丽宏, 等. 基于用户行为特征的微博转发预测研究[J]. 计算机学报, 2016, 39(10):1992-2006. LIU W, HE M, WANG L H, et al. Research on Weibo reposting prediction based on user behavior characteristics[J]. Journal of Computer, 2016, 39(10):1992-2006. (in Chinese)
[11] 唐晓波, 罗颖利. 融入情感差异和用户兴趣的微博转发预测[J]. 图书情报工作, 2017, 61(9):102-110. TANG X B, LUO Y L. Weibo forwarding prediction incorporating emotional differences and user interests[J]. Library and Information Service, 2017, 61(9):102-110. (in Chinese)
[12] LUARN P, YANG J C, CHIU Y P. The network effect on information dissemination on social network sites[J]. Computers in Human Behavior, 2014, 37:1-8.
[13] GUI X, WANG Y, KOU Y, et al. Understanding the patterns of health information dissemination on social media during the Zika outbreak[C]//AMIA Annual Symposium Proceedings. Online, American Medical Informatics Association, 2017:820-829.
[14] LIU I L B, CHEUNG C M K, LEE M K O. User satisfaction with microblogging:Information dissemination versus social networking[J]. Journal of the Association for Information Science and Technology, 2016, 67(1):56-70.
[15] 曹玖新, 吴江林, 石伟, 等. 新浪微博网信息传播分析与预测[J]. 计算机学报, 2014, 37(4):779-790. CAO J X, WU J L, SHI W, et al. Information transmission analysis and prediction on Sina weibo[J]. Journal of Computer Science, 2014, 37(4):779-790. (in Chinese)
[16] COMARELA G, CROVELLA M, ALMEIDA V, et al. Understanding factors that affect response rates in Twitter[C]//Proceedings of the 23rd ACM Conference on Hypertext and Social Media. New York, USA:Association for Computing Machinery, 2012:123-132.
[17] PENG H K, ZHU J, PIAO D, et al. Retweet modeling using conditional random fields[C]//2011 IEEE International Conference on Data Mining Workshops. New York, USA:IEEE, 2011:336-343.
[18] ZHANG Q, GONG Y, GUO Y, et al. Retweet behavior prediction using hierarchical dirichlet process[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin:AAAI Press, 2015:403-409.
[19] HOANG T A, LIM E P. Retweeting:An act of viral users, susceptible users, or viral topics?[C]//Proceedings of the 2013 SIAM International Conference on Data Mining. Online:Society for Industrial and Applied Mathematics, 2013:569-577.
[20] MEHROTRA R, SANNER S, BUNTINE W, et al. Improving LDA topic models for microblogs via tweet pooling and automatic labeling[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:Association for Computing Machinery, 2013:889-892.
[21] BLEI D M, NG A Y, JORDAN M I, et al. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
[22] LEE K, MAHMUD J, CHEN J, et al. Who will retweet this? Automatically identifying and engaging strangers on Twitter to spread information[C]//Proceedings of the 19th International Conference on Intelligent User Interfaces. New York, USA:Association for Computing Machinery, 2014:247-256.
[1] 喻宏伟, 周东波, 徐雯慧, 余雅滢, 王小梅, 涂悦. 基于多片段语义时空图卷积网络的大学生校园日常行为预测[J]. 清华大学学报(自然科学版), 2022, 62(1): 105-115.
[2] 张仰森, 郑佳, 黄改娟, 蒋玉茹. 基于双重注意力模型的微博情感分析方法[J]. 清华大学学报(自然科学版), 2018, 58(2): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn