Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (2): 89-95    DOI: 10.16511/j.cnki.qhdxxb.2021.21.002
  专题:新型冠状病毒肺炎 本期目录 | 过刊浏览 | 高级检索 |
新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险
吴家麟1,2, 翁文国1,2
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 清华大学 城市综合应急科学北京市重点实验室, 北京 100084
Transmission of COVID-19 viral particles and the risk of infection among passengers in air-conditioned buses
WU Jialin1,2, WENG Wenguo1,2
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, China
全文: PDF(13816 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 新型冠状病毒肺炎(COVID-19)存在气溶胶传播的可能性。该文选择了一例发生在湖南省空调大巴中的新冠肺炎传染案例,建立数值模型开展计算,分析了含新冠肺炎病毒的液滴和气溶胶的扩散输运过程,研究了空调排风模式、颗粒粒径、传染源位置等因素对于新冠肺炎病毒在空调大巴中传播规律的影响,并针对所有乘客的感染风险进行了定量评估,将结果与实际感染情况进行了对比。新冠肺炎感染者呼出的病毒颗粒有较高的比例沉积在大巴内部壁面与座椅表面。粒径和排风口位置会影响气溶胶扩散规律。小粒径含病毒气溶胶在空气中悬浮的时间长、扩散距离远,带给远处乘客的风险较高。基于研究结果,提出了降低空调大巴中新冠肺炎传播风险的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴家麟
翁文国
关键词 新型冠状病毒肺炎(COVID-19)空调大巴病毒颗粒气溶胶风险分析    
Abstract:Aerosol transmission of the corona virus disease 2019 (COVID-19) is possible. This study analyzed COVID-19 transmission in an air-conditioned bus in Hunan Province, China. A numerical model was used to predict the transport of droplets and aerosols containing the COVID-19 virus for various air conditioning modes, particle sizes, and source locations. The results were used for quantitative evaluations of the infection risks for all passengers with comparisons to the actual transmission rate. A high proportion of exhaled viral particles from COVID-19 infected people were deposited on the inner wall of the bus and the seat surface. Changing the particle sizes and the outlet locations leads to different aerosol diffusion paths. Small aerosols containing the virus can remain suspended in the air for prolonged periods of time and become widely spread, so these pose a higher risk to passengers seated far from the source. The results are used to develop suggestions for reducing the COVID-19 infection risk in air-conditioned buses.
Key wordscorona virus disease 2019 (COVID-19)    air-conditioned buses    viral particles    aerosol    risk analysis
收稿日期: 2020-07-23      出版日期: 2020-12-29
基金资助:翁文国,教授,E-mail:wgweng@tsinghua.edu.cn
引用本文:   
吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2): 89-95.
WU Jialin, WENG Wenguo. Transmission of COVID-19 viral particles and the risk of infection among passengers in air-conditioned buses. Journal of Tsinghua University(Science and Technology), 2021, 61(2): 89-95.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.002  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I2/89
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] World Health Organization. Disease outbreaks[R/OL]. (2016-12-15)[2020-07-20]. https://www.who.int/emergencies/diseases/en/.
[2] World Health Organization. Novel coronavirus (2019-nCoV) situation reports[R/OL]. (2020-07-19)[2020-07-20]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
[3] ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. New England Journal of Medicine, 2020, 382:727-733.
[4] LIU L, LI Y, NIELSEN P V, et al. Short-range airborne transmission of expiratory droplets between two people[J]. Indoor Air, 2016, 27(2):452-462.
[5] WATANABE T, BARTRAND T A, WEIR M H, et al. Development of a dose-response model for SARS coronavirus[J]. Risk Analysis:An International Journal, 2010, 30(7):1129-1138.
[6] QIAN H, LI Y. Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room[J]. Indoor Air, 2010, 20(4):284-297.
[7] FENG Y, MARCHAL T, SPERRY T, et al. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission:A numerical study[J]. Journal of Aerosol Science, 2020, 147:105585.
[8] DBOUK T, DRIKAKIS D. On coughing and airborne droplet transmission to humans[J]. Physics of Fluids, 2020, 32(5):053310.
[9] HAN Z, TO G N S, FU S C, et al. Effect of human movement on airborne disease transmission in an airplane cabin:Study using numerical modeling and quantitative risk analysis[J]. BMC Infectious Diseases, 2014, 14(1):1-19.
[10] YANG X, OU C, YANG H, et al. Transmission of pathogen-laden expiratory droplets in a coach bus[J]. Journal of Hazardous Materials, 2020, 397:122609.
[11] YIN Y, XU W, GUPTA J K, et al. Experimental study on displacement and mixing ventilation systems for a patient ward[J]. HVAC&R Research, 2009, 15(6):1175-1191.
[12] VAN Hooff T, NIELSEN P V, LI Y. Computational fluid dynamics predictions of non-isothermal ventilation flow:How can the user factor be minimized?[J]. Indoor Air, 2018, 28(6):866-880.
[13] ZHANG Z, CHEN X, MAZUMDAR S, et al. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J]. Building and Environment, 2009, 44(1):85-94.
[14] 中华人民共和国建设部. 城市公交空调客车空调系统技术条件:CJ/T 134-2001[S]. 北京:中国标准出版社, 2001. Ministry of Construction of the People's Republic of China. The technical requirements for the air-conditioning system of urban transit buses:CJ/T 134-2001[S]. Beijing:Standards Press of China, 2001. (in Chinese)
[15] ZHU S, KATO S, MURAKAMI S, et al. Study on inhalation region by means of CFD analysis and experiment[J]. Building and Environment, 2005, 40(10):1329-1336.
[16] MELIKOV A, BOLASHIKOV Z, NAGANO H, et al. Airflow at the breathing zone of seated person:Active control of the interaction of the free convection flow and locally applied airflow from front[J]. British Journal of Anaesthesia, 2011, 113(4):688-694.
[17] MATIDA E A, FINLAY W H, LANGE C F, et al. Improved numerical simulation of aerosol deposition in an idealized mouth-throat[J]. Journal of Aerosol Science, 2004, 35(1):1-19.
[18] GUO Y, WEI J, OU C, et al. Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation:A steady-state numerical investigation[J]. Aerosol Science and Technology, 2020, 54(8):869-879.
[19] SUN C, ZHAI Z. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission[J]. Sustainable Cities and Society, 2020, 62:102390.
[20] ZHAO B, ZHANG Y, LI X, et al. Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method[J]. Building and Environment, 2004, 39(1):1-8.
[21] SZE TO G N, CHAO C Y H. Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases[J]. Indoor Air, 2010, 20(1):2-16.
[1] 吴家麟, 翁文国, 付明. 人员移动对患者呼出病毒颗粒传播影响的数值研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 1044-1051.
[2] 黄梦瑶, 黄丽达, 袁宏永, 刘罡. 社交隔离对COVID-19的发展影响[J]. 清华大学学报(自然科学版), 2021, 61(2): 96-103.
[3] 孔啸, 刘乃嘉, 张梦豪, 徐明伟. COVID-19疫情前后高校在线教学数据分析[J]. 清华大学学报(自然科学版), 2021, 61(2): 104-116.
[4] 邱桐, 陈湘生, 苏栋. 城市地下空间综合韧性防灾抗疫建设框架[J]. 清华大学学报(自然科学版), 2021, 61(2): 117-127.
[5] 李子浩, 田向亮, 黎忠文, 周炜, 周志杰, 钟茂华. 基于客流规律的地铁车站客流风险分析[J]. 清华大学学报(自然科学版), 2019, 59(10): 854-860.
[6] 江锋, 庄子威, 张振中, 尉继英. 用于HEPA滤料效率检测的蒸发冷凝技术[J]. 清华大学学报(自然科学版), 2014, 54(5): 629-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn