Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (5): 465-477    DOI: 10.16511/j.cnki.qhdxxb.2021.21.009
  保护 本期目录 | 过刊浏览 | 高级检索 |
换流站传递特性及其对交直流电网保护影响
宋国兵, 张宇轩, 张晨浩, 侯俊杰, 徐瑞东
西安交通大学 电气工程学院, 西安 710049
Converter station transmission characteristics for protecting hybrid AC/DC power grids
SONG Guobing, ZHANG Yuxuan, ZHANG Chenhao, HOU Junjie, XU Ruidong
School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1184 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 中国已建成世界上规模最大、电压等级最高的交直流混联电网。换流器作为交直流混联系统的核心元件,连接了交流与直流电网。换流器在调控过程中具有非线性时变特性,对故障电气量的传递特性导致两侧电网存在复杂的交互影响。对于继电保护而言,亟需研究换流器两侧电气量之间的联系及两侧系统保护时序上的配合。该文首先介绍了换流站传递特性的数学分析方法,指出了其在进行故障分析工作时的局限性。其次,考虑换流站传递特性,对现有交流、直流保护方法进行了评估。一方面,直流侧换相失败传递至交流侧,可能导致交流侧保护出现适应性问题;另一方面,交流系统扰动传递至直流侧,可能影响到直流侧保护的性能。针对可能出现的交/直流保护不正确动作问题,总结了可行的解决方案。最后,展望了在换流站传递特性影响下,故障特征分析和保护原理的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋国兵
张宇轩
张晨浩
侯俊杰
徐瑞东
关键词 交直流混联电网换流站传递特性故障特征继电保护    
Abstract:China has built the world's largest high voltage hybrid AC/DC power grid. The key component of the hybrid AC/DC system is the converter connecting the AC and DC power grids. The converter regulator is non-linear and time-varying with complex interactions between the AC and DC grids. For relay protection research, it is important to study the relationship of the electric quantities between both sides of the converter and the coordination of the protection configured in the AC/DC system. This paper introduces a mathematical model of the converter station transmission characteristics and its fault analysis limitations. Then, protection methods for the AC and DC systems are evaluated based on the transmission characteristics. A commutation failure on the DC side can be transmitted to the AC side which will influence the adaptability of the AC system protection. In addition, an AC system disturbance can be transmitted to the DC system, which will affect the DC system protection. Solutions are given to correct these incorrect AC/DC protection responses. Finally, additional research ideas are given for fault analyses and protection principles based on the converter transmission characteristics.
Key wordshybrid AC/DC power grids    converter station transmission characteristics    fault characteristics    relay protection
收稿日期: 2020-11-19      出版日期: 2021-04-25
基金资助:国家自然科学基金联合基金重点支持项目(U1766209)
作者简介: 宋国兵(1972—),男,教授。E-mail:song.gb@163.com
引用本文:   
宋国兵, 张宇轩, 张晨浩, 侯俊杰, 徐瑞东. 换流站传递特性及其对交直流电网保护影响[J]. 清华大学学报(自然科学版), 2021, 61(5): 465-477.
SONG Guobing, ZHANG Yuxuan, ZHANG Chenhao, HOU Junjie, XU Ruidong. Converter station transmission characteristics for protecting hybrid AC/DC power grids. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 465-477.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.009  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I5/465
  
  
  
  
  
  
  
  
[1] 董新洲, 汤涌, 卜广全, 等. 大型交直流混联电网安全运行面临的问题与挑战[J].中国电机工程学报, 2019, 39(11):3107-3119. DONG X Z, TANG Y, BU G Q, et al. Confronting problem and challenge of large scale AC-DC hybrid power grid operation[J].Proceedings of the CSEE, 2019, 39(11):3107-3119. (in Chinese)
[2] 刘振亚. 特高压交直流电网[M]. 北京:中国电力出版社, 2013.LIU Z Y. Ultra-high voltage AC/DC hybrid power grid[M]. Beijing:China Electric Power Press, 2013. (in Chinese)
[3] 宋国兵, 高淑萍, 蔡新雷, 等. 高压直流输电线路继电保护技术综述[J]. 电力系统自动化, 2012, 36(22):123-129.SONG G B, GAO S P, CAI X L, et al. Survey of relay protection technology for HVDC transmission lines[J]. Automation of Electric Power Systems, 2012, 36(22):123-129.(in Chinese)
[4] 赵畹君.高压直流输电工程技术[M].北京:中国电力出版社, 2004.ZHAO W J. HVDC engineering technology[M]. Beijing:China Electric Power Press, 2004. (in Chinese)
[5] 徐敏, 蔡泽祥, 韩昆仑, 等. 交直流混联电网中交流暂态侵入对直流继电保护的影响分析[J]. 高电压技术, 2014, 40(11):3618-3625. XU M, CAI Z X, HAN K L, et al. Influence analysis of AC system transient invasion on DC protective relaying in AC/DC hybrid power system[J]. High Voltage Engineering, 2014, 40(11):3618-3625. (in Chinese)
[6] 谢惠藩, 杨光源, 彭光强, 等.云广特高压直流差动保护误动原因分析[J].电力系统自动化, 2013, 37(14):130-135.XIE H F, YANG G Y, PENG G Q, et al. Malfunction analysis on DC differential protection of Yunnan-Guangdong UHVDC[J]. Automation of Electric Power Systems, 2013, 37(14):130-135. (in Chinese)
[7] 汪道勇, 黄道春, 崔雨, 等. 葛洲坝换流站D桥差动保护动作原因及整改[J]. 高电压技术, 2008(7):1504-1508.WANG D Y, HUANG D C, CUI Y, et al. Reasons of differential protection action and reform measures for Gezhouba converter station D bridge[J]. High Voltage Engineering, 2008(7):1504-1508. (in Chinese)
[8] 曾宪刚, 王志滨, 吕伟权. 交直流混合系统中交流故障对直流的影响分析[J]. 高电压技术, 2006(9):29-32.ZENG X G, WANG Z B, LÜ W Q, Analysis on influence of AC system fault in AC/DC hybrid system on HVDC[J]. High Voltage Engineering, 2006(9):29-32. (in Chinese)
[9] 余江, 周红阳, 黄佳胤, 等. 交流系统故障导致直流线路保护动作的分析[J]. 南方电网技术, 2009, 3(3):20-23.YU J, ZHOU H Y, HUANG J Y, et al. Analysis on HVDC line protection action due to AC system fault[J]. Southern Power System Technology, 2009, 3(3):20-23. (in Chinese)
[10] 刘之尧, 唐卓尧, 张文峰, 等. 直流换相失败引起继电保护误动分析[J]. 电力系统自动化, 2006(19):104-107.LIU Z Y, TANG Z Y ZHANG W F, et al. Analysis of relay protection malfunction caused by DC commutation failure[J]. Automation of Electric Power Systems, 2006(19):104-107. (in Chinese)
[11] 鲁德锋, 毛为民, 冼伟雄. 直流换流站换流失败引起继电保护不正确动作的分析及防范措施探讨[J].电力设备, 2006(1):54-56. LU D F, MAO W M, XIAN W X. Discussion on incorrect action of protection cause by commutation failure in DC converter station and its countermeasures[J]. Electric Equipment, 2006(1):54-56. (in Chinese)
[12] 邵震, 王炳炎. 直流输电换相失败对交流侧继电保护的影响[J]. 高电压技术, 2006, 32(9):42-45.SHAO Z, WANG B Y. Analysis on influence of HVDC commutation failure on AC relay rotection[J]. High Voltage Engineering, 2006, 32(9):42-45. (in Chinese)
[13] 王童辉, 贾科, 毕天姝, 等. 基于动态相量理论的高压直流系统换相失败暂态特性[J].电力系统自动化, 2018, 42(23):78-86.WANG T H, JIA K, BI T S, et al. Transient characteristics of commutation failure of HVDC system based on dynamic phasor theory[J]. Automation of Electric Power Systems, 2018, 42(23):78-86. (in Chinese)
[14] 周长春, 徐政. 直流输电准稳态模型有效性的仿真验证[J].中国电机工程学报, 2003, 23(12):36-39.ZHOU C C, XU Z. Simulation validity test of the HVDC quasi-steady-state model[J]. Proceedings of the CSEE, 2003, 23(12):36-39. (in Chinese)
[15] 徐政. 联于弱交流系统的直流输电特性研究之一——直流输电的输送能力[J]. 电网技术, 1997, 21(1):12-16.XU Z. Characteristics of HVDC connected to weak AC systems Part 1:HVDC transmission capability[J]. Power System Technology, 1997, 21(1):12-16. (in Chinese)
[16] 贺杨烊, 郑晓冬, 邰能灵, 等.交直流混联电网LCC-HVDC换流器建模方法综述[J]. 中国电机工程学报, 2019, 39(11):3119-3130.HE Y Y, ZHENG X D, TAI N L, et al. A review of modeling methods for LCC-HVDC converter in AC/DC hybrid power grid[J]. Proceedings of the CSEE, 2019, 39(11):3119-3130. (in Chinese)
[17] 徐政. 交直流电力系统动态行为分析[M]. 北京:机械工业出版社, 2004.XU Z. Dynamic behavior analysis of AC/DC power system[M]. Beijing:China Machine Press, 2004. (in Chinese)
[18] HU L H, YACAMINI R. Harmonic transfer through converters and HVDC links[J]. IEEE Transactions on Power Electronics, 1992, 7(3):514-525.
[19] HU L H, MORRISONR. The use of modulation theory to calculate the harmonic distortion in HVDC systems operating on an unbalanced supply[J]. IEEE Transactions on Power Systems, 1997, 12(2):973-980.
[20] NGANDUI E, OLIVIER G, APRIL G, et al. Comprehensive switching functions approach to calculate harmonics produced by multipulse thyristor converters operating under unbalanced supply[C]//The 8th International Conference on Harmonics and Quality of Power. Athens, Greece:IEEE Press, 1998:837-843.
[21] 王钢, 李志铿, 李海锋, 等. HVDC换流器等值谐波阻抗的计算方法[J]. 中国电机工程学报, 2010, 30(19):64-68.WANG G, LI Z K, LI H F, Calculation method of harmonic equivalent impedances of HVDC converter[J]. Proceedings of the CSEE, 2010, 30(19):64-68. (in Chinese)
[22] 马玉龙, 肖湘宁, 姜旭. 交流系统接地故障对HVDC的影响分析[J].中国电机工程学报, 2006, 26(11):144-149.MA Y L, XIAO X N, JIANG X. Analysis of the impact of AC system single-phase earth fault on HVDC[J]. Proceedings of the CSEE, 2006, 26(11):144-149. (in Chinese)
[23] 丁天皓, 汪娟娟, 叶运铭, 等. 考虑交直流谐波交互影响的高压直流开关函数建模. 电网技术.. https://doi.org/10.13335/j.1000-3673.pst.2020.0798. DING T H, WANG J J, YE Y M, et al. Switching function model of HVDC converter by taking into account of AC/DC harmonic interaction. Power System Technology.. https://doi.org/10.13335/j.1000-3673.pst.2020.0798. (in Chinese)
[24] 何瑞文, 蔡泽祥. 动态相量法在电力系统暂态分析中的作用[J]. 电力系统及其自动化学报, 2004, 16(3):66-68, 82.HE R W, CAI Z X. Application of the dynamic phasors in power system transient analysis[J]. Proceedings of the EPSA, 2004, 16(3):66-68, 82. (in Chinese)
[25] 黄胜利, 周孝信. 分布参数输电线路的时变动态相量模型及其仿真[J]. 中国电机工程学报, 2002, 22(11):2-6.HUANG S L, ZHOU X X. The time-varying phasor model of the distributed parameter transmission line and its simulation[J]. Proceedings of the CSEE, 2002, 22(11):2-6. (in Chinese)
[26] 王钢, 李志铿, 李海锋, 等.交直流系统的换流器动态相量模型[J]. 中国电机工程学报, 2010, 30(1):59-64.WANG G. LI Z K, LI H F, et al. Dynamic phasor model of the converter of the AC/DC system[J]. Proceedings of the CSEE, 2010, 30(1):59-64. (in Chinese)
[27] 戚庆茹, 焦连伟, 严正, 等. 高压直流输电动态相量建模与仿真[J]. 中国电机工程学报, 2003, 23(12):31-35.QI Q R, JIAO L W, YAN Z, et al. Modeling and simulation of HVDC with dynamic phasors[J]. Proceedings of the CSEE, 2003, 23(12):31-35. (in Chinses)
[28] LIU J L, WANG G, LI H F, et al, A calculation method of harmonic for multi-infeed direct current[C]//2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan:IEEE Press, 2011:1-4.
[29] 曾淑云, 江全元, 陆韶琦, 等. 适用于不对称情况的线换相换流器动态相量模型[J]. 电力系统自动化, 2018, 42(11):129-135, 150.ZENG S Y, JIANG Q Y, LU Z Q, et al. Dynamic phasor model of line commutated converter under unbalanced conditions[J]. Automation of Electric Power Systems, 2018, 42(11):129-135, 150. (in Chinese)
[30] 孙慧平, 王西田, 李秀君. 高压直流输电动态相量模型的改进[J].电力系统保护与控制, 2013, 41(4):21-25.SUN H P, WANG X T, LI X J. Improved dynamic phasor model of HVDC[J]. Power System Protection and Control, 2013, 41(4):21-25. (in Chinese)
[31] 汪燕, 姚蜀军, 林芝茂, 等.一种基于多频段动态相量的LCC换流器电磁暂态建模方法研究[J].中国电机工程学报, 2020, 40(17):5644-5653.WANG Y, YAO S J, LIN Z M, et al. A modeling method for LCC electromagnetic transient simulation based on multi frequency band dynamic phasor[J]. Proceedings of the CSEE, 2020, 40(17):5644-5653. (in Chinese)
[32] 王宾, 李志中, 董新洲. 基于动态相量法的直流系统暂态响应实时快速仿真计算方法. 中国电机工程学报.. http://kns.cnki.net/kcms/detail/11.2107.TM.20200330.1229.004.html. WANG B, LI Z Z, DONG X Z. Real-time rapid simulation method for transient response of LCC-HVDC based on dynamic phasor method. Proceedings of the CSEE.. http://kns.cnki.net/kcms/detail/11.2107.TM.20200330.1229.004.html. (in Chinese)
[33] 蔡泽祥, 李晓华. 直流输电系统故障暂态和继电保护动态行为[M]. 北京:科学出版社, 2020.CAI Z X, LI X H. HVDC transmission system fault transient and dynamic behavior of relay protection[M]. Beijing:Science Press, 2020. (in Chinese)
[34] 李晓华, 蔡泽祥, 黄明辉, 等. 交直流电网故障暂态功率倒向解析[J]. 电力系统自动化, 2012, 36(10):61-66, 85.LI X H, CAI Z X, HUANG M H, et al. Transient power converse in an AC/DC interconnected power grid[J]. Automation of Electric Power Systems, 2012, 36(10):61-66, 85. (in Chinese)
[35] 张保会, 尹项根. 电力系统继电保护[M]. 北京:中国电力出版社, 2010.ZHANG B H, YIN X G. Power system protective relaying[M]. Beijing:China Electric Power Press, 2010. (in Chinese)
[36] 刘强, 蔡泽祥, 刘为雄, 等. 交直流互联电网暂态功率倒向及对继电保护的影响[J].电力系统自动化, 2007, 31(7):34-38. LIU Q, CAI Z X, LIU W X, et al. Transient power converse in AC/DC interconnected power grid and its influence on protective relaying[J]. Automation of Electric Power Systems, 2007, 31(7):34-38. (in Chinese)
[37] 杨光亮, 邰能灵, 郑晓冬, 等. 多馈入高压直流输电系统中功率倒向问题[J]. 电力自动化设备, 2010, 30(5):22-27.YANG G L, TAI N L, ZHENG X D, et al. Power converse in multi-infeed HVDC system[J]. Electric Power Automation Equipment, 2010, 30(5):22-27. (in Chinese)
[38] 李海锋, 张璞, 王钢, 等. 直流馈入下的工频变化量方向纵联保护动作特性分析(一)直流系统等值工频变化量阻抗模型[J]. 电力系统自动化, 2009, 33(9):41-46.LI H F, ZHANG P, WANG G, et al. Performance of directional protection based on variation on power-frequency components in HVDC/AC interconnected system Part one:DC-system equivalent impedance of power-frequency component variation[J]. Automation of Electric Power Systems, 2009, 33(9):41-46. (in Chinese)
[39] 李海锋, 张璞, 王钢, 等. 直流馈入下的工频变化量方向纵联保护动作特性分析(二)故障线路的方向保护[J]. 电力系统自动化, 2009, 33(10):47-53.LI H F, ZHANG P, WANG G, et al. Performance of directional protection based on variation on power-frequency components in HVDC/AC interconnected system Part two:Response of the directional protection for faulted line[J]. Automation of Electric Power Systems, 2009, 33(10):47-53. (in Chinese)
[40] 李海锋, 张璞, 王钢, 等. 直流馈入下的工频变化量方向纵联保护动作特性分析(三)非故障线路的方向保护[J]. 电力系统自动化, 2009, 33(11):43-48.Performance of directional protection based on variation on power-frequency components in HVDC/AC interconnected system Part three:Response if the directional protection for unfaulted lines[J]. Automation of Electric Power Systems, 2009, 33(11):43-48. (in Chinese)
[41] 刘可真, 梁松涛, 束洪春, 等. 过渡电阻对特高压交直流混联电网暂态功率倒向的影响分析[J].高电压技术, 2015, 41(4):1257-1261.LIU K Z, LIANG S T, SHU H C, et al. Influence of transition resistance on transient power converse in UHVAC/DC hybrid power system[J]. High Voltage Engineering, 2015, 41(4):1257-1261. (in Chinese)
[42] 罗瑞, 樊艳芳. 交直流系统连锁故障引发功率倒向方向保护策略[J]. 电力自动化设备, 2019, 39(12):189-197.LUO R, FANG Y F. Directional protection strategy of power inversion caused by chain fault of AC/DC hybrid system[J]. Electric Power Automation Equipment, 2019, 39(12):189-197. (in Chinese)
[43] 刘俊磊, 王钢, 李海锋, 等. HVDC系统换相失败对交流电网继电保护影响的机理分析[J].中国电机工程学报, 2013, 33(19):111-118, 13.LIU J L, WANG G, LI H F. Mechanism analysis of HVDC commutation failure influence on AC power network relay protection[J]. Proceedings of the CSEE, 2013, 33(19):111-118, 13. (in Chinese)
[44] 张璞, 王钢, 李海锋, 等. 直流馈入下的输电线路电流差动保护动作特性分析[J]. 电力系统保护与控制, 2010, 38(10):1-5.ZHANG P, WANG G, LI H F, et al. Performance of current differential protection for transmission lines in HVDC/AC interconnected system[J]. Power System Protection and Control, 2010, 38(10):1-5. (in Chinese)
[45] 申洪明, 黄少锋, 费彬. HVDC换相失败暂态特性及其对差动保护的影响分析和对策[J]. 电力自动化设备, 2015, 35(4):109-114, 120.SHEN H M, HUANG S F, FEI B. Transient characteristic of HVDC system during commutation failure, its effect on differential protection and countermeasures[J]. Electric Power Automation Equipment, 2015, 35(4):109-114, 120. (in Chinese)
[46] 张健康, 索南加乐, 孙成, 等. 基于参数识别的纵联保护在交直流混联电网中的应用研究[J].电力系统保护与控制, 2012, 40(24):34-39.ZHANG J K, SUONAN J L, SUN C, et al. Application of pilot protection based on parameter identification in AC-DC hybrid grid[J]. Power System Protection and Control, 2012, 40(24):34-39. (in Chinese)
[47] 索南加乐, 张健康, 刘林林, 等. 交直流混联系统对距离保护暂态超越的影响及解决措施[J].西安交通大学学报, 2010, 44(4):57-61.SUONAN J L, ZHANG J K, LIU L L, et al. Impact of AC-DC compound power system on distance protection transient overreach and resolving measures[J]. Journal of Xi'an Jiaotong University, 2010, 44(4):57-61. (in Chinese)
[48] 黄少锋, 费彬, 申洪明, 等. 换相失败对距离保护的影响分析及防范措施的研究[J].电力系统保护与控制, 2014, 42(20):123-128.HUANG S F, FEI B, SHEN H M, et al. Effect of commutation failure on distance protection and the countermeasures[J]. Power System Protection and Control, 2014, 42(20):123-128. (in Chinese)
[49] 张璞, 王钢, 李海锋. 直流馈入下的输电线路距离保护动作特性分析[J]. 电力系统自动化, 2012, 36(6):56-62.ZHANG P, WANG G, LI H F. Performance of distance protection for transmission lines in an HVDC/AC interconnected power system[J]. Automation of Electric Power Systems, 2012, 36(6):56-62. (in Chinese)
[50] 费彬, 黄少锋, 申洪明.交直流互联系统对距离保护的影响分析及对策[J].电力自动化设备, 2015, 35(8):15-21.FEI B, HUANG S F, SHEN H M. Impact of AC-DC interconnected system on distance protection and countermeasure[J]. Electric Power Automation Equipment, 2015, 35(8):15-21. (in Chinese)
[51] 申洪明, 黄少锋, 费彬. 交直流互联系统对距离保护动作特性的影响分析及对策[J].电力系统自动化, 2015, 39(11):58-63, 82.SHEN H M, HUANG S F, FEI B. Effect analysis of AC/DC interconnected network on distance protection performance and countermeasures[J]. Automation of Electric Power Systems, 2015, 39(11):58-63, 82. (in Chinese)
[52] 葛耀中. 新型继电保护和故障测距的原理与技术[M]. 西安:西安交通大学出版社, 2007.GE Y Z. Principle and technology of new type relay protection and fault location[M]. Xi'an:Xi'an Jiaotong University Press, 2007. (in Chinese)
[53] 张健康, 索南加乐, 焦在滨, 等. 交直流混联电网突变量选相元件动作性能分析[J]. 电力系统自动化, 2011, 35(17):76-80.ZHANG J K. SUONAN J L, JIAO Z B. Performance analysis of phase selector device based on fault component in AC-DC hybrid power grid[J]. Automation of Electric Power Systems, 2011, 35(17):76-80. (in Chinese)
[54] 李永丽, 杨子荷, 宋金钊, 等. HVDC馈入及其换相失败对交流电网选相元件的影响分析[J].电网技术, 2020, 44(5):1825-1834.LI Y L, YANG Z H, SONG J Z, et al. Influence analysis of HVDC and commutation failure on AC phase selector[J]. Power System Technology, 2020, 44(5):1825-1834. (in Chinese)
[55] 黄少锋, 申洪明, 费彬. 交直流互联系统对电流选相元件的影响分析及对策[J].华北电力大学学报(自然科学版), 2016, 43(2):1-7.HUANG S F, SHEN H M, FEI B. The effect of AC/DC interconnected network on the phase selector based on current and the countermeasure[J]. Journal of North China Electric Power University, 2016, 43(2):1-7. (in Chinese)
[56] 索南加乐, 张健康, 张军民, 等. 交直流混联系统对变压器保护性能的影响及解决措施[J].电力系统自动化, 2010, 34(3):101-106. SUONAN J L, ZHANG J K, ZHANG J M, et al. The adverse impacts on transformer protection performance by hybrid AC-DC transmission grid system and counter-measures[J]. Automation of Electric Power Systems, 2010, 34(3):101-106. (in Chinese).
[57] 黄少锋, 申洪明, 刘玮, 等. 交直流互联系统对换流变压器差动保护的影响分析及对策[J]. 电力系统自动化, 2015, 39(23):158-164.HUANG S F, SHEN H M, LIU W, et al. Effect of AC/DC interconnected network on transformer protection and its countermeasures[J]. Automation of Electric Power Systems, 2015, 39(23):158-164. (in Chinese)
[58] 罗四倍. 特高压电网交流线路全信息量快速保护的研究[D]. 济南:山东大学, 2019.LUO S B. Fast protection based on the full fault information for AC transmission lines in UHV grid[D]. Jinan:Shandong University, 2019. (in Chinese)
[59] 段建东, 李浩, 雷阳, 等. 利用同步挤压小波变换的高压交直流混联系统交流线路暂态方向保护[J]. 中国电机工程学报, 2019, 39(13):3833-3842.DUAN J D, LI H, LEI Y, et al. Transient-based directional protection using synchrosqueezing wavelet transforms for AC transmission lines in HVAC/DC hybrid system[J]. Proceedings of the CSEE, 2019, 39(13):3833-3842. (in Chinese)
[60] 余江, 周红阳, 黄佳胤, 等. 影响直流100 Hz保护的交流系统故障范围分析[J]. 电力系统自动化, 2008(3):48-51.YU J, ZHOU H Y, HUANG J Y, et al. Impact of fault location in AC system to 100 Hz protection of HVDC[J]. Automation of Electric Power Systems, 2008(3):48-51. (in Chinese)
[61] 刘天作, 吴卫, 韩情涛, 等. 柴达木换流站直流谐波保护动作分析[J]. 河南电力, 2012, 40(4):18-22.LIU T Z, WU W, HAN Q T, et al. Analysis of HVDC harmonic protection action in Qaidam converter station[J]. Henan Electric Power Technology, 2012, 40(4):18-22. (in Chinese)
[62] 王维庆, 刘俊勇, 王海云, 等. HVDC换流阀故障特性分析及直流侧100Hz谐波计算方法研究[J].高电压技术, 2016, 42(1):33-38.WANG W Q, LIU J Y, WANG H Y, et al. Analysis of HVDC valve fault characteristics and study of DC-side 100 Hz harmonic calculation method[J]. High Voltage Engineering, 2016, 42(1):33-38. (in Chinese)
[63] 黄宁, 范春菊, 姜山, 等. 基于直流100 Hz分量的交直流保护配合方法[J]. 电网技术, 2019, 43(11):4150-4159. HUANG N, FAN C J, JIANG S, et al. Coordination method between AC and DC protections based on DC side 100 Hz component[J]. Power System Technology, 2019, 43(11):4150-4159. (in Chinese)
[64] 韩昆仑, 蔡泽祥, 李佳曼, 等. 考虑直流控制的换流器交流侧故障及其保护动作行为分析[J].高电压技术, 2014, 40(8):2531-2540.HAN K L, CAI Z X, LI J M, et al. Analysis of fault on the AC side of converter and action of converter protection considering DC control[J]. High Voltage Engineering, 2014, 40(8):2531-2540. (in Chinese)
[65] 李佳曼, 蔡泽祥, 李晓华, 等. 直流系统保护对交流故障的响应机理与交流故障引发的直流系统保护误动分析[J].电网技术, 2015, 39(4):953-960.LI J M, CAI Z X, LI X H, et al. Response mechanism of UHVDC system protection to faults in UHVAC system and analysis on malfunction of UHVDC protection caused by faults in UHVAC system[J]. Power System Technology, 2015, 39(4):953-960. (in Chinese)
[66] 余超耘, 蔡泽祥, 李晓华, 等. 换流器直流差动保护动作特性分析与优化[J]. 电网技术, 2015, 39(6):1744-1750.YU C Y, CAI Z X, LI X H, et al. Analysis and optimization on operation characteristics of DC differential protection of HVDC transmission system[J]. Power System Technology, 2015, 39(6):1744-1750. (in Chinese)
[67] 韩昆仑, 蔡泽祥, 徐敏, 等. 直流线路行波保护特征量动态特性与整定研究[J]. 电网技术, 2013, 37(1):255-260.HAN K L, CAI Z X, XU M, et al. Dynamic characteristics of characteristic parameters of traveling wave protection for HVDC transmission line and their setting[J]. Power System Technology, 2013, 37(1):255-260. (in Chinese)
[68] 韩昆仑, 蔡泽祥, 徐敏, 等. 高压直流输电线路微分欠压保护特征量动态特性分析与整定[J].电力自动化设备, 2014, 34(2):114-119.HAN K L, CAI Z X, XU M, et al. Dynamic characteristic analysis and setting of characteristic parameters of differential under-voltage protection for HVDC transmission line[J]. Electric Power Automation Equipment, 2014, 34(2):114-119. (in Chinese)
[69] WU J Y, LI H F, WANG G, et al.An improved traveling-wave protection scheme for LCC-HVDC transmission lines[J].IEEE Transactions on Power Delivery, 2017, 32(1):106-116.
[70] 张晨浩, 宋国兵, 董新洲, 等. 利用波前广义Logistic函数拟合的直流输电线路快速保护原理[J]. 中国电机工程学报, 2019, 39(11):3168-3176.ZHANG C H, SONG G B, DONG X Z, et al. Principle of high speed protection for DC transmission line using wave front generalized logistic function fitting[J]. Proceedings of the CSEE. 2019, 39(11):3168-3176. (in Chinese)
[71] 张晨浩, 宋国兵, 董新洲. 利用故障电流首行波拟合的柔性直流输电线路单端行波保护原理. 中国电机工程学报..https://doi.org/10.13334/j.0258-8013.pcsee.191748. ZHANG C H, SONG G B, DONG X Z. Principle of non-unit traveling wave protection for VSC-HVDC transmission line using fault current initial traveling wave fitting. Proceedings of the CSEE.. https://doi.org/10.13334/j.0258-8013.pcsee.191748. (in Chinese)
[72] LUO S X, DONG X Z, SHI S X, et al.A non-unit protection principle based on travelling wave for HVDC transmission lines[C]//Proceedings of the 50th International Universities Power Engineering Conference.Stoke-on-Trent, UK:IEEE Press, 2015:1-6.
[73] 童宁, 林湘宁, 张雪松, 等. 不依赖于边界元件的架空型多端柔直电网就地测距式接地保护原理[J].中国电机工程学报, 2019, 39(7):2049-2060.TONG N, LIN X N, ZHANG X S, et al. Fault location based single-ended protection strategy for overhead VSC-MTDC independent on boundary component[J]. Proceedings of the CSEE, 2019, 39(7):2049-2060. (in Chinese)
[74] 宋国兵, 张晨浩, 杨黎明, 等. 利用波前信息的直流输电线路超高速保护原理[J]. 电网技术, 2019, 43(2):576-581.SONG G B, ZHANG C H, YANG L M. Principle of ultra-high-speed protection for DC transmission line using wave front information[J]. Power System Technology, 2019, 43(2):576-581. (in Chinese)
[75] 张保会, 孔飞, 张嵩, 等. 高压直流输电线路单端暂态量保护装置的技术开发[J]. 中国电机工程学报, 2013, 33(4):179-185, 24.ZHANG B H, KONG F, ZHANG S, et al. Technical development of non-unit protection devices based on transient signals for HVDC transmission lines[J]. Proceedings of the CSEE, 2013, 33(4):179-185, 24. (in Chinese)
[76] 束洪春, 刘可真, 朱盛强, 等. ±800kV特高压直流输电线路单端电气量暂态保护[J]. 中国电机工程学报, 2010, 30(31):108-117.SHU H C, LIU K Z, ZHU S Q, et al. ±800 kV UHVDC transmission line protection based on single end electrical transient signal[J]. Proceedings of the CSEE, 2010, 30(31):108-117. (in Chinese)
[77] 王钢, 李志铿, 李海锋. ±800kV特高压直流线路暂态保护[J]. 电力系统自动化, 2007(21):40-43, 48.WANG G, LI Z K, LI H F. Transient based protection for ±800 kV UHVDC transmission lines[J]. Automation of Electric Power Systems, 2007(21):40-43, 48. (in Chinese)
[78] 束洪春, 田鑫萃, 张广斌, 等.±800kV直流输电线路的极波暂态量保护[J].中国电机工程学报, 2011, 31(22):96-104.SHU H C, TIAN X C, ZHANG G B, et al. Protection for ±800 kV HVDC transmission lines using pole wave transients[J]. Proceedings of the CSEE, 2011, 31(22):96-104. (in Chinese)
[79] LI R, XU L, YAO L Z. DC fault detection and location in meshed multiterminal HVDC systems based on DC reactor voltage change rate[J]. IEEE Transactions on Power Delivery, 2017, 32(11):1516-1526.
[80] LI C Y, GOLE A, ZHAO C Y. A fast DC fault detection method using DC reactor voltages in HVDC grids[J]. IEEE Transactions on Power Delivery, 2018, 33(5), 2254-2264.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn