Large-disturbance stability of power systems with high penetration of renewables and inverters: Phenomena, challenges, and perspectives
YANG Peng1, LIU Feng1, JIANG Qirong1, MAO Hangyin2
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. State Grid Zhejiang Electric Power Company, Hangzhou 310007, China
Abstract:The green energy revolution is leading to power systems with high penetrations of renewable energy sources and high penetrations of inverter-interfaced devices. The dynamic characteristics of these power systems are very different from conventional systems, which has led to many new stability problems. This paper focuses on large-disturbance stability issues and the large-disturbance instability phenomena that appear in these “double-high” power systems. This paper also discusses the shortcomings of existing methods and upcoming challenges. Finally, this paper presents our perspectives on future theoretical models and methods to provide large-disturbance stability in “double-high” power systems.
杨鹏, 刘锋, 姜齐荣, 毛航银. “双高”电力系统大扰动稳定性:问题、挑战与展望[J]. 清华大学学报(自然科学版), 2021, 61(5): 403-414.
YANG Peng, LIU Feng, JIANG Qirong, MAO Hangyin. Large-disturbance stability of power systems with high penetration of renewables and inverters: Phenomena, challenges, and perspectives. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 403-414.
[1] IRENA. Global renewables outlook:Energy transformation 2050[R]. Abu Dhabi:International Renewable Energy Agency, 2020. [2] IRENA. Data & Statistics.. https://www.irena.org/Statistics. [3] 国家发展和改革委员会能源研究所, 能源基金会. 中国2050高比例可再生能源发展情景暨途径研究[R]. 北京:国家发展和改革委员会能源研究所, 2015.Energy Research Institute of National Development and Reform Commission, Energy Foundation. China 2050 high renewable energy penetration scenario and roadmap study[R]. Beijing:Energy Research Institute of National Development and Reform Commission, 2015. (in Chinese) [4] LEW D, BARTLETT D, GROOM A, et al. Secrets of successful integration:Operating experience with high levels of variable, inverter-based generation[J]. IEEE Power and Energy Magazine, 2019, 17(6):24-34. [5] KUNDUR P, PASERBA J, AJJARAPU V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19(3):1387-1401. [6] TSOURAKIS G, NOMIKOS B M, VOURNAS C D. Effect of wind parks with doubly fed asynchronous generators on small-signal stability[J]. Electric Power Systems Research, 2009, 79(1):190-200. [7] MILLER N W. Keeping it together:Transient stability in a world of wind and solar generation[J]. IEEE Power and Energy Magazine, 2015, 13(6):31-39. [8] 姜齐荣, 王亮, 谢小荣. 电力电子化电力系统的振荡问题及其抑制措施研究[J]. 高电压技术, 2017, 43(4):1057-1066.JIANG Q R, WANG L, XIE X R. Study on oscillations of power-electronized power system and their mitigation schemes[J]. High Voltage Engineering, 2017, 43(4):1057-1066. (in Chinese) [9] MATEVOSYAN J, BADRZADEH B, PREVOST T, et al. Grid-forming inverters:Are they the key for high renewable penetration?[J]. IEEE Power and Energy Magazine, 2019, 17(6):89-98. [10] ZHANG L D, HARNEFORS L, NEE H P. Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2):809-820. [11] GÖKSUÖ, TEODORESCU R, BAK C L, et al. Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution[J]. IEEE Transactions on Power Systems, 2014, 29(4):1683-1691. [12] HU Q, FU L, MA F, et al. Large signal synchronizing instability of PLL-based VSC connected to weak AC grid[J]. IEEE Transactions on Power Systems, 2019, 34(4):3220-3229. [13] MA S K, GENG H, LIU L, et al. Grid-synchronization stability improvement of large scale wind farm during severe grid fault[J]. IEEE Transactions on Power Systems, 2018, 33(1):216-226. [14] XIN H H, HUANG L B, ZHANG L Q, et al. Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation[J]. IEEE Transactions on Power Systems, 2016, 31(6):5206-5207. [15] HUANG L B, XIN H H, WANG Z, et al. Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J]. IEEE Transactions on Smart Grid, 2019, 10(1):578-591. [16] FARROKHABADI M, KÖNIG S, CA AÑU IZARES C A, et al. Battery energy storage system models for microgrid stability analysis and dynamic simulation[J]. IEEE Transactions on Power Systems, 2018, 33(2):2301-2312. [17] HUANG Y H, YUAN X M, HU J B, et al. DC-bus voltage control stability affected by AC-bus voltage control in VSCs connected to weak AC grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(2):445-458. [18] RAJAMOHAMED S, JEYANTHY P A, DEVARAJ D. Study on the impact of under voltage ride through charactertics of larger PV penetrations on the system transient stability[C]//20174th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore, India:IEEE Press, 2017:1-6. [19] GENG H, LIU L, LI R Q. Synchronization and reactive current support of PMSG-based wind farm during severe grid fault[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4):1596-1604. [20] 中华人民共和国国家经济贸易委员会. 电力系统安全稳定导则:DL 755-2001[S]. 北京:中国电力出版社, 2001.State Economic and Trade Commission of the People's Republic of China. Guide on security and stability for power system:DL 755-2001[S]. Beijing:China Electric Power Press 2001. (in Chinese) [21] TIELENS P, VAN HERTEM D. The relevance of inertia in power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55:999-1009. [22] GAUTAM D, VITTAL V, HARBOUR T. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE Transactions on Power Systems, 2009, 24(3):1426-1434. [23] MULJADI E, BUTTERFIELD C P, PARSONS B, et al. Effect of variable speed wind turbine generator on stability of a weak grid[J]. IEEE Transactions on Energy Conversion, 2007, 22(1):29-36. [24] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(一):理论基础[J]. 中国电机工程学报, 2015, 35(15):3832-3842.TANG L, SHEN C, ZHANG X M. Impact of large-scale wind power centralized integration on transient angle stability of power systems-Part I:Theoretical foundation[J]. Proceedings of the CSEE, 2015, 35(15):3832-3842. (in Chinese) [25] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(二):影响因素分析[J]. 中国电机工程学报, 2015, 35(16):4043-4051.TANG L, SHEN C, ZHANG X M. Impact of large-scale wind power centralized integration on transient angle stability of power systems-Part Ⅱ:Factors affecting transient angle stability[J]. Proceedings of the CSEE, 2015, 35(15):3832-3842. (in Chinese) [26] LIU Z, ZHANG Z A, LIN Y S. Impact of inverter-interfaced renewable generation on transient stability at varying levels of penetration[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. Washington DC, USA:IEEE Press, 2018:4027-4032. [27] RAMPOKANYO M, KAMERA P. Impact of increased penetration levels of distributed inverter-based generation on transient stability[C]//2018 IEEE PES/IAS PowerAfrica. Cape Town, South Africa:IEEE Press, 2018:573-578. [28] 于珍, 沈沉, 刘锋, 等. 计及风电不确定性的含暂态稳定约束的经济调度[J]. 中国电机工程学报, 2020, 40(22):7270-7282.YU Z, SHEN C, LIU F, et al. Transient stability-constrained economic dispatch considering wind power uncertainty[J]. Proceedings of the CSEE, 2020, 40(22):7270-7282. (in Chinese) [29] EFTEKHARNEJAD S, VITTAL V, HEYDT G T, et al. Impact of increased penetration of photovoltaic generation on power systems[J]. IEEE Transactions on Power Systems, 2013, 28(2):893-901. [30] TAMRAKAR U, GALIPEAU D, TONKOSKI R, et al. Improving transient stability of photovoltaic-hydro microgrids using virtual synchronous machines[C]//2015 IEEE Eindhoven PowerTech. Eindhoven, Netherlands:IEEE Press, 2015:1-6. [31] CHEEMA K M, MEHMOOD K. Improved virtual synchronous generator control to analyse and enhance the transient stability of microgrid[J]. IET Renewable Power Generation, IET Digital Library, 2020, 14(4):495-505. [32] WU H, WANG X F. A mode-adaptive power-angle control method for transient stability enhancement of virtual synchronous generators[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2):1034-1049. [33] LIU J, YANG D J, YAO W, et al. PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system[J]. Protection and Control of Modern Power Systems, 2017, 2(1):1-8. [34] KIAEI I, LOTFIFARD S. Tube-based model predictive control of energy storage systems for enhancing transient stability of power systems[J]. IEEE Transactions on Smart Grid, 2018, 9(6):6438-6447. [35] KANCHANAHARUTHAI A, CHANKONG V, LOPARO K A. Transient stability and voltage regulation in multimachine power systems vis-à-vis STATCOM and battery energy storage[J]. IEEE Transactions on Power Systems, 2015, 30(5):2404-2416. [36] 陈磊, 刘永奇, 戴远航, 等. 电力电子接口新能源并网的暂态电压稳定机理研究[J]. 电力系统保护与控制, 2016, 44(9):15-21.CHEN L, LIU Y Q, DAI Y H, et al. Study on the mechanism of transient voltage stability of new energy source with power electronic interface[J]. Power System Protection and Control, 2016, 44(9):15-21. (in Chinese) [37] KHANI D, SADEGHI YAZDANKHAH A, MADADI KOJABADI H. Impacts of distributed generations on power system transient and voltage stability[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):488-500. [38] POURBEIK P, EFTEKHARNEJAD S, BELVAL R. An investigation of the impact of photovoltaic generation on a utility transmission system[C]//CIGRE Grid of the Future Symposium. Boston, MA:CIGRZ Press, 2013:1-8. [39] DEVARAJ D, JEEVAJYOTHI R. Impact of wind turbine systems on power system voltage stability[C]//2011 International Conference on Computer, Communication and Electrical Technology (ICCCET). Tirunelveli, India:IEEE Press 2011:411-416. [40] ALY M M, ABDEL-AKHER M, ZIADI Z, et al. Assessment of reactive power contribution of photovoltaic energy systems on voltage profile and stability of distribution systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 61:665-672. [41] DE RIJCKE S, ERGUN H K, VAN HERTEM D, et al. Grid impact of voltage control and reactive power support by wind turbines equipped with direct-drive synchronous machines[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4):890-898. [42] DHARMAKEERTHI C H, MITHULANANTHAN N, SAHA T K. Modeling and planning of EV fast charging station in power grid[C]//2012 IEEE Power and Energy Society General Meeting. San Diego, CA:IEEE Press, 2012:1-8. [43] 汤涌, 林伟芳, 孙华东, 等. 考虑负荷变化特性的电压稳定判据分析[J]. 中国电机工程学报, 2010, 30(16):12-18.TANG Y, LIN W F, SUN H D, et al. Analysis of voltage stability criterion considering load characteristics[J]. Proceedings of the CSEE, 2010, 30(16):12-18. (in Chinese) [44] 潘小艳, 王建全. 特高压电网接入浙江电网的暂态电压稳定分析和控制策略[J]. 华东电力, 2010, 38(6):863-866.PAN X Y, WANG J Q. Transient voltage stability analysis and control strategies of UHV access Zhejiang grid[J]. East China Electric Power, 2010, 38(6):863-866. (in Chinese) [45] 邵瑶, 汤涌, 郭小江, 等. 多直流馈入华东受端电网暂态电压稳定性分析[J]. 电网技术, 2011, 35(12):50-55.SHAO Y, TANG Y, GUO X J, et al. Transient voltage stability analysis of east china receiving-end power grid with multi-infeed HVDC transmission lines[J]. Power System Technology, 2011, 35(12):50-55. (in Chinese) [46] TAN O T, THOTTAPPILLIL R. Static var compensators for critical synchronous motor loads during voltage dips[J]. IEEE Transactions on Power Systems, 1994, 9(3):1517-1523. [47] 王树东, 杨钊, 高翔. 基于GTO的STATCOM提高风电场暂态电压稳定性的研究[J]. 电气自动化, 2016, 38(5):47-49.WANG S D, YANG Z, GAO X. A study on improvement of transient voltage stability of wind power generation farm through GTO-based STATCOM[J]. Electrical Automation, 2016, 38(5):47-49. (in Chinese) [48] MILLER N W, SHAO M L, D'AQUILA R, et al. Frequency response of the US eastern interconnection under conditions of high wind and solar generation[C]//2015 Seventh Annual IEEE Green Technologies Conference. New Orleans, LA:IEEE Press, 2015:21-28. [49] MILLER N W, SHAO M L, VENKATARAMAN S, et al. Frequency response of California and WECC under high wind and solar conditions[C]//2012 IEEE Power and Energy Society General Meeting. San Diego, CA:IEEE Press, 2012:1-8. [50] MILANO F, DÖRFLER F, HUG G, et al. Foundations and challenges of low-inertia systems[C]//2018 Power Systems Computation Conference (PSCC). Dublin, Ireland:IEEE Press, 2018:1-25. [51] PAGANINI F, MALLADA E. Global analysis of synchronization performance for power systems:Bridging the theory-practice gap[J]. IEEE Transactions on Automatic Control, 2019:1-1. [52] KAYIKCI M, MILANOVIC J V. Dynamic contribution of DFIG-based wind plants to system frequency disturbances[J]. IEEE Transactions on Power Systems, 2009, 24(2):859-867. [53] WU S Y, YANG P, ZHANG Y F, et al. On the key factors of frequency stability in future low-inertia power systems[C]//20202nd International Conference on Smart Power & Internet Energy Systems (SPIES). Bangkok, Thailand:IEEE Press, 2020:240-245. [54] XI X Z, GENG H, YANG G, et al. Torsional oscillation damping control for DFIG-based wind farm participating in power system frequency regulation[J]. IEEE Transactions on Industry Applications, 2018, 54(4):3687-3701. [55] HUANG L B, XIN H H, ZHANG L Q, et al. Synchronization and frequency regulation of DFIG-based wind turbine generators with synchronized control[J]. IEEE Transactions on Energy Conversion, 2017, 32(3):1251-1262. [56] XI J B, GENG H, ZOU X. Decoupling scheme for virtual synchronous generator controlled wind farms participating in inertial response. Journal of Modern Power Systems and Clean Energy. DOI:10.35833/MPCE.2019.000341. [57] KAUR J, YOGARATHINAM A, CHAUDHURI N R. Frequency control for weak AC grid connected to wind farm and LCC-HVDC system:Modeling and stability analysis[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA:IEEE Press, 2016:1-5. [58] ADREES A, MILANOVI AĆG J. Effect of load models on angular and frequency stability of low inertia power networks[J]. Transmission Distribution IET Generation, 2019, 13(9):1520-1526. [59] FARROKHABADI M, CA AÑU IZARES C A, SIMPSON-PORCO J W, et al. Microgrid stability definitions, analysis, and examples[J]. IEEE Transactions on Power Systems, 2020, 35(1):13-29. [60] HATZIARGYRIOU N. Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies PES-TR77[R]. Piscataway, N J:Power System Dynamic Performance Committee (PSDP), 2020. [61] CHEN L, DAI Y H, MIN Y, et al. Study on the mechanism of transient voltage stability of wind power with power electronic interface[C]//2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Brisbane, QLD:IEEE Press, 2015:1-5. [62] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19):5145-5154, 5395.YUAN X M, CHENG S J, HU J B. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19):5145-5154, 5395. (in Chinese) [63] 胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18):5457-5467, 5594.HU J B, YUAN X M, CHENG S J. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18):5457-5467, 5594. (in Chinese) [64] TANG W, HU J B, CHANG Y Z, et al. Modeling of DFIG-based wind turbine for power system transient response analysis in rotor speed control timescale[J]. IEEE Transactions on Power Systems, 2018, 33(6):6795-6805. [65] KRAUS R, MATTAUSCH H J. Status and trends of power semiconductor device models for circuit simulation[J]. IEEE Transactions on Power Electronics, 1998, 13(3):452-465. [66] 施博辰, 赵争鸣, 朱义诚, 等. 电力电子混杂系统多时间尺度离散状态事件驱动仿真方法. 中国电机工程学报. (2020-09-28). https://kns.cnki.net/kcms/detail/11.2107.TM.20200928.1320.002.html. SHI B C, ZHAO Z M, ZHU Y C, et al. Discrete-state event-driven simulation approach for multi-time-scale power electronic hybrid system. Proceedings of the CSEE. (2020-09-28). https://kns.cnki.net/kcms/detail/11.2107.TM.20200928.1320.002.html. (in Chinese) [67] QUINT R, DANGELMAIER L, GREEN I, et al. Transformation of the grid:The impact of distributed energy resources on bulk power systems[J]. IEEE Power and Energy Magazine, 2019, 17(6):35-45. [68] BLONDEL V D, TSITSIKLIS J N. A survey of computational complexity results in systems and control[J]. Automatica, 2000, 36(9):1249-1274. [69] 中华人民共和国国家市场监督管理总局, 国家标准化管理委员会. 电力系统安全稳定导则:GB 38755-2019[S]. 北京:中国标准出版社, 2019.State Administration for Market Regulation of the People's Republic of China, Standardization Administration of the People's Republic of China. Code on security and stability for power system:GB 38755-2019[S]. Beijing:Standards Press of China, 2019. (in Chinese) [70] 徐政. 电力系统广义同步稳定性的物理机理与研究途径[J]. 电力自动化设备, 2020, 40(9):3-9.XU Z. Physical mechanism and research approach of generalized synchronous stability for power systems[J]. Electric Power Automation Equipment, 2020, 40(9):3-9. (in Chinese) [71] SCHIFFER J, ZONETTI D, ORTEGA R, et al. A survey on modeling of microgrids:From fundamental physics to phasors and voltage sources[J]. Automatica, 2016, 74:135-150. [72] YAN S H, ZHOU Z Y, DINAVAHI V. Large-scale nonlinear device-level power electronic circuit simulation on massively parallel graphics processing architectures[J]. IEEE Transactions on Power Electronics, 2018, 33(6):4660-4678. [73] BENIGNI A, MONTI A, DOUGAL R A. Latency-based approach to the simulation of large power electronics systems[J]. IEEE Transactions on Power Electronics, 2014, 29(6):3201-3213. [74] SONG Y K, CHEN Y, YU Z T, et al. CloudPSS:A high-performance power system simulator based on cloud computing[J]. Energy Reports, 2020, 6:1611-1618. [75] YANG P, LIU F, WANG Z J, et al. Distributed stability conditions for power systems with heterogeneous nonlinear bus dynamics[J]. IEEE Transactions on Power Systems, 2020, 35(3):2313-2324. [76] CALISKAN S Y, TABUADA P. Compositional transient stability analysis of multimachine power networks[J]. IEEE Transactions on Control of Network Systems, 2014, 1(1):4-14. [77] ZHANG Y, XIE L. A transient stability assessment framework in power electronic-interfaced distribution systems[J]. IEEE Transactions on Power Systems, 2016, 31(6):5106-5114.