Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (5): 395-402    DOI: 10.16511/j.cnki.qhdxxb.2021.21.011
  小干扰稳定性 本期目录 | 过刊浏览 | 高级检索 |
计及开关过程的LCC-HVDC小信号建模及其对电力系统电磁尺度稳定性分析
江克证1, 朱建行1, 胡家兵1, 汪海蛟2
1. 华中科技大学 电气与电子工程学院, 强电磁工程与新技术国家重点实验室, 武汉 430074;
2. 中国电力科学研究院有限公司 新能源与储能运行控制国家重点实验室, 北京 100192
Small-signal modeling of LCC-HVDC systems with switching for electromagnetic timescale stability analyses of power systems
JIANG Kezheng1, ZHU Jianhang1, HU Jiabing1, WANG Haijiao2
1. State Key Laboratory of Advanced Electromagnetic Engineering Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China
全文: PDF(2700 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 电力电子装备在电力系统中的广泛应用使得现代电力系统动态行为发生了显著变化,基于电网换相整流器的高压直流输电(LCC-HVDC)作为电力系统重要的组成部分,对电力系统的安全稳定运行具有重要影响。由于LCC-HVDC开关过程呈现断续时变特征,且开关频率与电磁尺度时间常数相当,因此断续时变开关过程的动态特性描述是研究LCC-HVDC电磁尺度动态稳定问题的关键。为此,该文提出了适用于计及开关过程的LCC-HVDC电磁尺度动态稳定分析的小信号模型。首先讨论了LCC-HVDC原始关系及其非线性断续周期时变特征,指出基本问题和挑战;然后基于线性周期时变理论建立了LCC-HVDC电磁尺度下的小信号模型。最后,通过与现有不考虑时变开关过程模型的对比分析,探究了开关过程对系统稳定性的影响,并通过时域仿真验证了分析的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江克证
朱建行
胡家兵
汪海蛟
关键词 基于电网换相整流器的高压直流输电(LCC-HVDC)开关过程周期时变谐波状态空间(HSS)电磁尺度    
Abstract:The wide application of power electronic equipment in power systems has caused significant changes in the dynamic behavior of modern power systems. As an important power system component, line commutated converter based high voltage direct current (LCC-HVDC) systems have an important impact on the safe, stable operation of power systems. Since the switching process in LCC-HVDC systems has intermittent time-varying characteristics and the switching frequency is equivalent to the electromagnetic timescale constant, these intermittent time-varying switching characteristics are the key to the stability of LCC-HVDC systems. This paper presents an electromagnetic timescale, small-signal model for LCC-HVDC systems that includes the switching process with a stability analysis. The model includes the nonlinear characteristics and the inherent periodic time-varying characteristics of LCC-HVDC systems for modeling the key challenges in the control system. Then, linear time-periodic theory is used to develop an electromagnetic timescale, small-signal model of the LCC-HVDC system. Finally, this model is compared with an existing model that does not consider the time-varying characteristics of the switching process to show the influence of the switching on the system stability with the results verified by time-domain simulations.
Key wordsline commutated converter based high valtage direct current (LCC-HVDC)    switching process    periodic time-varying    harmonic state space (HSS)    electromagnetic timescale
收稿日期: 2020-11-30      出版日期: 2021-04-25
基金资助:国家重点研发计划项目(2016YFB0900100);国家电网科技项目(XTB17202000284)
通讯作者: 朱建行,博士后,E-mail:jh_zhu@hust.edu.cn      E-mail: jh_zhu@hust.edu.cn
作者简介: 江克证(1995—),男,硕士研究生。
引用本文:   
江克证, 朱建行, 胡家兵, 汪海蛟. 计及开关过程的LCC-HVDC小信号建模及其对电力系统电磁尺度稳定性分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 395-402.
JIANG Kezheng, ZHU Jianhang, HU Jiabing, WANG Haijiao. Small-signal modeling of LCC-HVDC systems with switching for electromagnetic timescale stability analyses of power systems. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 395-402.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.011  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I5/395
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 周孝信, 鲁宗相, 刘应梅,等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29):4999-5008.ZHOU X X, LU Z X, LIU Y M, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29):4999-5008. (in Chinese)
[2] 周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望——试论三代电网[J]. 中国电机工程学报, 2013, 36(22):1-11.ZHOU X X, CHEN S Y, LU Z X. Review and prospect for power system development and related technologies:A concept of three-generation power systems[J]. Proceedings of the CSEE, 2013, 36(22):1-11. (in Chinese)
[3] 赵畹君.高压直流输电工程技术[M]. 2版. 北京:中国电力出版社, 2011. ZHAO W J. High voltage direct current transmission engineering technology[M]. 2nd ed. Beijing:China Electric Power Press, 2011. (in Chinese)
[4] KIMBARK E W, Direct current transmission[M]. New York:Wiley, 1971.
[5] 陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J].电网技术, 2017, 41(10):3095-3103CHEN G P, LI M J, XU T, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10):3095-3103. (in Chinese)
[6] 国家电网公司电力调度控制中心. 2017年国家电网公司系统电网运行方式[R]. 北京:国家电网公司, 2017.State Grid Corporation of China Power Dispatching Control Center. State grid corporation of China system grid operation mode in 2017[R]. Beijing:State Grid Corporation of China, 2017. (in Chinese)
[7] 全球能源互联网发展合作组织.中国"十四五"电力发展规划研究[R].北京:全球能源互联网发展合作组, 2020.Global Energy Internet Development Cooperation Organization. Research on China's "14th Five-Year" electric power development plan[R]. Beijing:Global Energy Internet Development Cooperation Organization, 2020. (in Chinese)
[8] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19):5145-5154, 5395.YUAN X M, CHENG S J, HU J B. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19):5145-5154, 5395. (in Chinese)
[9] 郭春义, 宁琳如, 王虹富,等. 基于开关函数的LCC-HVDC换流站动态模型及小干扰稳定性[J]. 电网技术, 2017, 41(12):3862-3870.GUO C Y, NING L R, WANG H F, et al. Switching-function based dynamic model of LCC-HVDC station and small signal stability analysis[J]. Power System Technology, 2017, 41(12):3862-3870. (in Chinese)
[10] OSAUSKAS C M, WOOD A R. Small-signal dynamic modeling of HVDC systems[J]. IEEE Transactions on Power Delivery, 2003, 18(1):220-225.
[11] KARAWITA C, ANNAKKAGE U D. Multi-infeed HVDC interaction studies using small-signal stability assessment[J]. IEEE Transactions on Power Delivery, 2009, 24(2):910-918.
[12] 戚庆茹, 焦连伟, 严正, 等. 高压直流输电动态相量建模与仿真[J].中国电机工程学报, 2003, 23(12):31-35.QI Q R, JIAO L W, YAN Z, et al. Modeling and simulation of HVDC with dynamic phasors[J]. Proceedings of the CSEE, 2003, 23(12):31-35. (in Chinese)
[13] DARYABAK M, FILIZADEH S, JATSKEVICH J, et al. Modeling of LCC-HVDC systems using dynamic phasors[J]. IEEE Transactions on Power Delivery, 2014, 29(4):1989-1998.
[14] WERELEY N. Analysis and control of linear periodically time varying systems[D]. Boston, MA:Massachusetts Institute of Technology, 1991.
[15] SZECHTMAN M. First benchmark model for HVDC control studies[J]. Electra, 1991, 135(4):54-73.
[16] LU J, YUAN X M, HU J B, et al. Motion equation modeling of LCC-HVDC stations for analyzing DC and AC network interactions[J]. IEEE Transactions on Power Delivery, 2020, 35(3):1563-1574.
[17] HU Y P, LU J, ZHOU H F. Commutation failure analysis considering direct current dynamics in LCC-HVDC systems[C]//12th IET International Conference on AC and DC Power Transmission (ACDC 2016). Beijing:IET, 2016:1-5.
[18] HU L, YACAMINI R. Harmonic transfer through converters and HVDC links[J]. IEEE Transactions on Power Electronics, 1992, 7(3):514-525.
[19] ZHU J H, HU J B, MA S C. Modeling and analysis of MMC in AC current control timescale considering PLL dynamics[C]//2019 IEEE Power & Energy Society General Meeting (PESGM). Atlanta, GA:IEEE, 2019:1-5.
[20] ZHU J H, MA S C, GONG X, et al. Mechanism underlying constant amplitude oscillation of grid-tied voltage source converters[C]//The 8th Renewable Power Generation Conference (RPG 2019). Shanghai:IET, 2019:1-6.
[21] ZHU J H, HU J B, WANG S C, et al. Small-signal modeling and analysis of MMC under unbalanced grid conditions based on linear time-periodic (LTP) method[J]. IEEE Transactions on Power Delivery, 2021, 36(1):205-214.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn