Abstract:The integration of new energy sources through grid-connected inverters (GCI) is changing the dynamic characteristics of modern power systems. Electromechanical transient stability analyses for systems dominated by synchronous generators are no longer comprehensive since they do not take the electromagnetic transients into account. This paper presents an overview of electromagnetic transient synchronous stability issues of GCI during fault ride-throughs of new energy generation units caused by large disturbances in which the GCI loses synchronization with the main system which causes the corresponding generator to go offline. This paper describes the GCI current source and voltage source control and the synchronization mechanism compared with that of the synchronous generator. This paper then introduces the key factors characterizing the power electronics and simplifications that give fast accurate results. Then, this paper introduces the typical modeling-analysis process and stability improvement strategies. Finally, further research challenges are identified to improve the power system stability.
[1] 水电水利规划设计总院. 中国可再生能源产业发展报告. 2018[M]. 北京:中国水利水电出版社, 2018.China Renewable Energy Engineering Institute. The renewable energy industrial development report (2018)[M]. Beijing:China Water & Power Press, 2018. (in Chinese) [2] KUNDUR P, PASERBA J, AJJARAPU V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19(3):1387-1401. [3] HATZIARGYRIOU N, MILANOVIC J V, RAHMANN C, et al. Definition and classification of power system stability revisited & extended[J/OL]. IEEE Transactions on Power Systems. DOI:10.1109/TPWRS.2020.3041774. [4] 谢小荣, 贺静波, 毛航银, 等."双高"电力系统稳定性的新问题及分类探讨[J].中国电机工程学报, 2021, 41(2):461-475. XIE X R, HE J B, MAO H Y, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2):461-475. (in Chinese) [5] 徐政. 电力系统广义同步稳定性的物理机理与研究途径[J]. 电力自动化设备, 2020, 40(9):3-9.XU Z. Physical mechanism and research approach of generalized synchronous stability for power systems[J]. Electric Power Automation Equipment, 2020, 40(9):3-9. (in Chinese) [6] WANG X, TAUL M G, Wu H, et al. Grid-synchronization stability of converter-based resources:An overview[J]. IEEE Open Journal of Industry Applications, 2020, 1:115-134. [7] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4734-4749. [8] 黄林彬, 辛焕海, 鞠平, 等. 电力电子并网装备的同步稳定分析与统一同步控制结构[J]. 电力自动化设备, 2020, 40(9):10-25.HUANG L B, XIN H H, JU P, et al. Synchronization stability analysis and unified synchronization control structure of grid-connected power electronic devices[J]. Electric Power Automation Equipment, 2020, 40(9):10-25. (in Chinese) [9] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(二):影响因素分析[J].中国电机工程学报, 2015, 35(16):4043-4051. TANG L, SHEN C, ZHANG X M. Impact of large-scale wind power centralized integration on transient angle stability of power systems-part II:Factors affecting transient angle stability[J]. Proceedings of the CSEE, 2015, 35(16):4043-4051. (in Chinese) [10] 田新首, 王伟胜, 迟永宁, 等. 双馈风电机组故障行为及对电力系统暂态稳定性的影响[J]. 电力系统自动化, 2015, 39(10):16-21.TIAN X S, WANG W S, CHI Y N, et al. Performances of DFIG-based wind turbines during system fault and its impacts on transient stability of power systems[J]. Automation of Electric Power Systems, 2015, 39(10):16-21. (in Chinese) [11] 姜惠兰, 吴玉璋, 周照清, 等. 含双馈风力发电场的多机系统暂态功角稳定性分析方法[J]. 中国电机工程学报, 2018, 38(4):999-1005, 1276.JIANG H L, WU Y Z, ZHOU Z Q, et al. A method to analyze the transient angle stability of multi-machine system with DFIG-based wind farm[J]. Proceedings of the CSEE, 2018, 38(4):999-1005, 1276. (in Chinese) [12] 程雪坤, 刘辉, 田云峰, 等. 基于虚拟同步控制的双馈风电并网系统暂态功角稳定研究综述与展望[J]. 电网技术, 2021, 45(2):518-525. CHENG X K, LIU H, TIAN Y F, et al. Review of transient power angle stability of doubly-fed induction generator with virtual synchronous generator technology integration system[J]. Power System Technology, 2021, 45(2):518-525. (in Chinese) [13] Australian Energy Market Operator. Black system South Australia 28 September 2016:Third preliminary report. (2017-07-13). http://www.aemo.com.au/-/media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2016/power-system-in-nsw-not-secure-on-28-nov-2016.pdf?la=en&hash=B4EBE992E7D42694FEB9A69545247975. [14] North American Electric Reliability Corporation. 1200 MW fault induced solar photovoltaic resource interruption disturbance report[EB/OL].. http://www.nerc.com/pa/rrm/ea/1200_MW_Fault_Induced_Solar_Photovoltaic_Resource_/1200_MW_Fault_Induced_Solar_Photovoltaic_Resource_Interruption_Final.pdf. [15] National Grid Electricity System Operator. Technical report on the events of 9 August 2019[EB/OL].. http://www.nationalgrideso.com/document/152346/download. [16] PICO H N V, JOHNSON B B. Transient stability assessment of multi-machine multi-converter power systems[J]. IEEE Transactions on Power Systems, 2019, 34(5):3504-3514. [17] WU H, WANG X F. Design-oriented transient stability analysis of grid-connected converters with power synchronization control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8):6473-6482. [18] TAUL M G, WANG X F, DAVARI P, et al. An overview of assessment methods for synchronization stability of grid-connected converters under severe symmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2019, 34(10):9655-9670. [19] HE X Q, GENG H, LI R Q, et al. Transient stability analysis and enhancement of renewable energy conversion system during LVRT[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3):1612-1623. [20] 曾正, 邵伟华, 刘清阳, 等. 并网逆变器数字锁相环的数学物理本质分析[J]. 电工技术学报, 2018, 33(4):808-816.ZENG Z, SHAO W H, LIU Q Y, et al. Mathematical and physical fundaments of digital phase-locked loop for grid-connected inverters[J]. Transactions of China Electrotechnical Society, 2018, 33(4):808-816. (in Chinese) [21] 孙宏斌, 姜齐荣, 周荣光, 等. 电力系统分析. 上册[M]. 北京:清华大学出版社, 2011.SUN H B, JIANG Q R, ZHOU R G, et al. Power system analysis (1)[M]. Beijing:Tsinghua University Press, 2004. (in Chinese) [22] YU H, AWAL M A, TU H, et al. Comparative transient stability assessment of droop and dispatchable virtual oscillator controlled grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2021, 36(2):2119-2130. [23] PAN D H, WANG X F, LIU F C, et al. Transient stability of voltage-source converters with grid-forming control:A design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2):1019-1033. [24] 姜齐荣, 孙宏斌, 周荣光, 等. 电力系统分析. 下册[M]. 北京:清华大学出版社, 2011.JIANG Q R, SUN H B, ZHOU R G, et al. Power system analysis (2)[M]. Beijing:Tsinghua University Press, 2004. (in Chinese) [25] 康勇, 林新春, 郑云, 等. 新能源并网变换器单机无穷大系统的静态稳定极限及静态稳定工作区[J].中国电机工程学报, 2020, 40(14):4506-4515, 4730.KANG Y, LIN X C, ZHENG Y, et al. The static stable-limit and static stable-working zone for single-machine infinite-bus system of renewable-energy grid-connected converter[J]. Proceedings of the CSEE, 2020, 40(14):4506-4515, 4730. (in Chinese) [26] 黄林彬, 章雷其, 辛焕海, 等. 下垂控制逆变器的虚拟功角稳定机理分析[J]. 电力系统自动化, 2016, 40(12):117-123, 150.HUANG L B, ZHANG L Q, XIN H H, et al. Mechanism analysis of virtual power angle stability in droop-controlled inverters[J]. Automation of Electric Power Systems, 2016, 40(12):117-123, 150. (in Chinese) [27] YANG Z Q, MA R, CHENG S J, et al. Nonlinear modeling and analysis of grid-connected voltage source converters under voltage dips[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3):2546-2558. [28] GENG H, LIU L, LI R Q. Synchronization and reactive current support of PMSG-based wind farm during severe grid fault[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4):1596-1604. [29] WU H, WANG X F, Design-oriented transient stability analysis of PLL-synchronized voltage-source converters[J]. IEEE Transactions on Power Electronics, 2020, 35(4):3573-3589. [30] 胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18):5457-5467, 5594.HU J B, YUAN X M, CHENG S J. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18):5457-5467, 5594. (in Chinese) [31] 叶一达, 魏林君, 阮佳阳, 等. 电力电子接口电源的准功率特性降阶建模体系[J]. 中国电机工程学报, 2017, 37(14):3993-4001, 4277.YE Y D, WEI L J, RUAN J Y, et al. A generic reduced-order modeling hierarchy for power-electronic interfaced generators with the quasi-constant-power feature[J]. Proceedings of the CSEE, 2017, 37(14):3993-4001, 4277. (in Chinese) [32] 韩刚, 张琛, 蔡旭. 电网短路故障引发的全功率风电机组频率失稳机理与控制方法[J]. 电工技术学报, 2018, 33(10):2167-2175.HAN G, ZHANG C, CAI X. Mechanism of frequency instability of full-scale wind turbines caused by grid short circuit fault and its control method[J]. Transactions of China Electrotechnical Society, 2018, 33(10):2167-2175. (in Chinese) [33] TANG W, HU J B, CHANG Y Z, et al. Modeling of DFIG-based wind turbine for power system transient response analysis in rotor speed control timescale[J]. IEEE Transactions on Power Systems, 2018, 33(6):6795-6805. [34] TAUL M G, GOLESTAN S, WANG X F, et al. Modeling of converter synchronization stability under grid faults:The general case[J/OL]. IEEE Journal of Emerging and Selected Topics in Power Electronics. DOI:10.1109/JESTPE.2020.3024940. [35] HE X Q, HE C, GENG H, et al. Synchronization instability of inverter-based generation during asymmetrical grid faults. (2020-11-20). https://arxiv.org/abs/2011.10316. [36] GÖKSU Ö, TEODORESCU R, BAK C L, et al. Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution[J]. IEEE Transactions on Power Systems, 2014, 29(4):1683-1691. [37] ERLICH I, SHEWAREGA F, ENGELHARDT S, et al. Effect of wind turbine output current during faults on grid voltage and the transient stability of wind parks[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, AB, Canada:IEEE Press, 2009:1-8. [38] TAUL M G, WANG X F, DAVARI P, et al. An efficient reduced-order model for studying synchronization stability of grid-following converters during grid faults[C]//201920th Workshop on Control and Modeling for Power Electronics (COMPEL). Toronto, ON, Canada:IEEE Press, 2019:1-7. [39] FU X K, SUN J J, HUANG M, et al. Large-signal stability of grid-forming and grid-following controls in voltage source converter:A comparative study[J]. IEEE Transactions on Power Electronics, 2021, 36(7):7832-7840. [40] HE X Q, GENG H, XI J B, et al. Resynchronization analysis and improvement of grid-connected VSCs during grid faults[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1):438-450. [41] HE X Q, GENG H. Synchronization stability analysis and enhancement of grid-tied multi-converter systems[C]//2020 IEEE Industry Applications Society Annual Meeting. Detroit, MI, USA:IEEE Press, 2020:1-8. [42] TAUL M G, WANG X F, DAVARI P, et al. Reduced-order and aggregated modeling of large-signal synchronization stability for multi-converter systems[J/OL]. IEEE Journal of Emerging and Selected Topics in Power Electronics. DOI:10.1109/JESTPE.2020.3015293. [43] MA S K, GENG H, LIU L, et al. Grid-synchronization stability improvement of large scale wind farm during severe grid fault[J]. IEEE Transactions on Power Systems, 2018, 33(1):216-226. [44] PEI J X, YAO J, LIU R K, et al. Characteristic analysis and risk assessment for voltage-frequency coupled transient instability of large-scale grid-connected renewable energy plants during LVRT[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7):5515-5530, [45] TAUL M G, WANG X F, DAVARI P, et al. Robust fault ride through of converter-based generation during severe faults with phase jumps[J]. IEEE Transactions on Industry Applications, 2020, 56(1):570-583. [46] WEISE B. Impact of K-factor and active current reduction during fault-ride-through of generating units connected via voltage-sourced converters on power system stability[J]. IET Renewable Power Generation, 2015, 9(1):25-36. [47] TAUL M G, WANG X F, DAVARI P, et al. Systematic approach for transient stability evaluation of grid-tied converters during power system faults[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA:IEEE Press, 2019:5191-5198. [48] WU H, WANG X F. Transient stability impact of the phase-locked loop on grid-connected voltage source converters[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia). Niigata, Japan:IEEE Press, 2018:2673-2680. [49] HE X Q, GENG H, MA S K. Transient stability analysis of grid-tied converters considering PLL's nonlinearity[J]. CPSS Transactions on Power Electronics and Applications, 2019, 4(1):40-49. [50] HU Q, FU L J, MA F, et al. Large signal synchronizing instability of PLL-based VSC connected to weak AC grid[J]. IEEE Transactions on Power Systems, 2019, 34(4):3220-3229. [51] WU H, WANG X F. An adaptive phase-locked loop for the transient stability enhancement of grid-connected voltage source converters[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE). Portland, OR, USA:IEEE Press, 2018:5892-5898. [52] WU C, XIONG X L, TAUL M G, et al. Enhancing transient stability of PLL-synchronized converters by introducing voltage normalization control[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11(1):69-78. [53] LIU Y, YAO J, PEI J, et al. Transient stability enhancement control strategy based on improved PLL for grid-connected VSC during severe grid fault[J]. IEEE Transactions on Energy Conversion, 2021, 36(1):218-229. [54] ZHAO J T, HUANG M, YAN H, et al. Nonlinear and transient stability analysis of phase-locked loops in grid-connected converters[J]. IEEE Transactions on Power Electronics, 2021, 36(1):1018-1029. [55] LI P K, WANG Y, LIU Y H, et al. Transient stability analysis of virtual synchronous generator connected to an infinite bus[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA:IEEE Press, 2019:2099-2104. [56] QI C, WANG K, ZHONG Q C, et al. Transient angle stability of inverters equipped with robust droop control. CSEE Journal of Power and Energy Systems. DOI:10.17775/CSEEJPES.2019.03140. [57] SHUAI Z K, SHEN C, LIU X, et al. Transient angle stability of virtual synchronous generators using Lyapunov's direct method[J]. IEEE Transactions on Smart Grid, 2019, 10(4):4648-4661. [58] 李清辉, 葛平娟, 肖凡, 等. 基于功角与电流灵活调控的VSG故障穿越方法研究[J]. 中国电机工程学报, 2020, 40(7):2071-2080, 2387.LI Q H, GE P J, XIAO F, et al. Study on fault ride-through method of VSG based on power angle and current flexible regulation[J]. Proceedings of the CSEE, 2020, 40(7):2071-2080, 2387. (in Chinese) [59] PAN D, WANG X F, LIU F C, et al. Transient stability impact of reactive power control on grid-connected converters[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). Baltimore, MD, USA:IEEE Press, 2019:4311-4316. [60] YU M D, HUANG W T, TAI N L, et al. Transient stability mechanism of grid-connected inverter-interfaced distributed generators using droop control strategy[J]. Applied Energy, 2018, 210:737-747. [61] XI X Z, YU M D, ZHANG M Q, et al. A transient stability enhancement control method for inverter interfaced distribution generators[C]//The 8th Renewable Power Generation Conference (RPG 2019). Shanghai, China:IET, 2019:1-5. [62] ALIPOOR J, MIURA Y, ISE T. Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2):451-458. [63] 张余余, 赵晋斌, 李芬, 等.基于功角动态补偿的VSG故障穿越方法研究[J/OL]. 电网技术. DOI:10.13335/j.1000-3673.pst.2020.1624. ZHANG Y Y, ZHAO J B, LI F, et al. VSG fault based on dynamic compensation of power angle research on crossing method[J/OL]. Power System Technology. DOI:10.13335/j.1000-3673.pst.2020.1624. (in Chinese) [64] WU H, WANG X F. Transient angle stability analysis of grid-connected converters with the first-order active power loop[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC). San Antonio, TX, USA:IEEE, 2018:3011-3016. [65] WU H, WANG X F. A mode-adaptive power-angle control method for transient stability enhancement of virtual synchronous generators[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2):1034-1049. [66] XIONG X L, WU C, HU B, et al. Transient damping method for improving the synchronization stability of virtual synchronous generators[J]. IEEE Transactions on Power Electronics, 2021, 36(7):7820-7831. [67] LIU T, WANG X F, Transient stability of single-loop voltage-magnitude controlled grid-forming converters[J]. IEEE Transactions on Power Electronics, 2021, 36(6):6158-6162. [68] QORIA T, GRUSON F, COLAS F, et al. Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2):1050-1061. [69] GROß D, DÖRFLER F. Projected grid-forming control for current-limiting of power converters[C]//201957th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, IL, USA:IEEE, 2019:326-333. [70] CHEN J R, PRYSTUPCZUK F, O'DONNELL T. Use of voltage limits for current limitations in grid-forming converters[J]. CSEE Journal of Power and Energy Systems, 2020,6(2):259-269. [71] 章雷其, 黄林彬, 黄伟, 等. 提高下垂控制逆变器虚拟功角暂态稳定性的控制方法[J]. 电力系统自动化, 2017, 41(12):56-62, 99.ZHANG L Q, HUANG L B, HUANG W, et al. Control methods for improving virtual power angle transient stability of droop-controlled inverters[J]. Automation of Electric Power Systems, 2017, 41(12):56-62, 99. (in Chinese) [72] HUANG L B, XIN H H, WANG Z, et al. Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J]. IEEE Transactions on Smart Grid, 2019, 10(1):578-591. [73] 赵峰, 帅智康, 彭也伦, 等. 含电流限幅器的逆变器暂态稳定性评估方法[J]. 中国电机工程学报, 2021, 41(6):2245-2255.ZHAO F, SHUAI Z K, PENG Y L, et al. Evaluation method for transient stability of inverter containing current limiter[J]. Proceedings of the CSEE, 2021, 41(6):2245-2255. (in Chinese) [74] CHEN J R, LIU M Y, O'DONNELL T, et al. Impact of current transients on the synchronization stability assessment of grid-feeding converters[J]. IEEE Transactions on Power Systems, 2020, 35(5):4131-4134. [75] HU Q, FU L J, MA F, et al. Analogized synchronous-generator model of PLL-based VSC and transient synchronizing stability of converter dominated power system[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2):1118-1134. [76] SHEN C, SHUAI Z K, SHEN Y, et al. Transient stability and current injection design of paralleled current-controlled VSCs and virtual synchronous generators[J]. IEEE Transactions on Smart Grid, 2021, 12(2):1118-1134. [77] 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J/OL]. 中国电机工程学报.[2021-01-13]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGDC20210111003&DbName=DKFX2021. ZHANG Y, CAI X, ZHANG C, et al. Transient synchronization stability analysis of voltage source converters:A review[J/OL]. Proceedings of the CSEE.[2021-01-13]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGDC0210111003&DbName=DKFX2021. (in Chinese) [78] TANG W, HU J, ZHANG R. Impact of mechanical power variation on transient stability of DFIG-based wind turbine[C]//2018 IEEE 4th Southern Power Electronics Conference (SPEC). Singapore:IEEE Press, 2018:1-7. [79] HE X Q, GENG H. Transient stability of power systems integrated with inverter-based generation[J]. IEEE Transactions on Power Systems, 2021, 36(1):553-556. [80] WANG W Z, HUANG G M, RAMASUBRAMANIAN D, et al. Transient stability analysis and stability margin evaluation of phase-locked loop synchronised converter-based generators[J]. IET Generation, Transmission & Distribution, 2020, 14(22):5000-5010. [81] LI Y B, WANG X, GUO J, et al. PLL Synchronization stability analysis of MMC-connected wind farms under high-impedance AC faults[J/OL]. IEEE Transactions on Power Systems. DOI:10.1109/TPWRS.2020.3025917. [82] TSE C K, HUANG M, ZHANG X, et al. Circuits and systems issues in power electronics penetrated power grid[J]. IEEE Open Journal of Circuits and Systems, 2020, 1:140-156.