Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (5): 437-445    DOI: 10.16511/j.cnki.qhdxxb.2021.21.017
  频率稳定性 本期目录 | 过刊浏览 | 高级检索 |
考虑小干扰稳定和频率稳定的虚拟惯量配置分析
花赟玥1, 杨超然1, 何国庆2, 辛焕海1
1. 浙江大学 电气工程学院, 杭州 310027;
2. 中国电力科学院有限公司, 北京 100192
Virtual inertia configuration analysis considering small-signal stability and frequency stability
HUA Yunyue1, YANG Chaoran1, HE Guoqing2, XIN Huanhai1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. China Electric Power Research Institute, Beijing 100192, China
全文: PDF(5036 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 新能源发电占比的提高使得系统惯量下降,虚拟同步机可为系统提供惯量支撑。目前,虚拟惯量的配置主要是从小干扰稳定和频率稳定两者之一的角度进行分析的,鲜有研究同时考虑这2个因素。并且,虚拟惯量配置的研究主要针对电压源型虚拟同步机,很少针对电流源型虚拟同步机。为此,该文通过建立电压源型和电流源型虚拟同步机的同步主导回路模型,分析了虚拟惯量参数对2种稳定性的影响。研究表明,虚拟惯量的减小会提高系统的小干扰稳定性;然而,在功率扰动下,电流源型虚拟同步机的输出频率会叠加受虚拟惯量主导的Vq暂态分量从而产生超调,虚拟惯量过小会导致频率超调过大,不满足并网运行标准。因此,为了使系统具有良好的小干扰稳定性和频率稳定性,虚拟惯量的配置需要同时考虑这2种稳定性的约束。最后,在单机无穷大系统和孤岛两机系统的虚拟惯量配置仿真中验证了该结论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
花赟玥
杨超然
何国庆
辛焕海
关键词 虚拟惯量虚拟惯量配置小干扰稳定频率稳定    
Abstract:With the increase in the proportion of new energy generation, the inertia of power system decreases. A virtual synchronous machine can provide inertia for the power system. At present, most of the parameter configuration of the virtual inertia is analyzed from the perspective of small-signal or frequency stability. These two factors have been simultaneously considered by a few studies to conduct virtual inertia configuration. Moreover, research on the configuration of virtual inertia mainly focuses on the voltage-source virtual synchronous machine, while a current-source virtual synchronous machine is rarely studied. To solve this problem, the influence of virtual inertia parameters on the small-signal stability and frequency stability is analyzed by establishing synchronous dominant loop models for voltage-source and current-source virtual synchronous machines. Results show that the small-signal stability of the system can be improved by decreasing the virtual inertia. However, under power perturbation, the output frequency of the current-source virtual synchronous machine will superimpose the transient component of Vq dominated by the virtual inertia, resulting in overshoot. If the virtual inertia parameter is too small, the frequency will not meet the grid-connected operation standard. Based on this, for the system to simultaneously exhibit good small-signal stability and frequency stability, the configuration of virtual inertia needs to be restricted by the two kinds of stability. Finally, the conclusion of this study is verified through the simulation of the inertia configuration of a single infinite machine system and an island two-machine system.
Key wordsvirtual inertia    virtual inertia configuration    small-signal stability    frequency stability
收稿日期: 2020-12-25      出版日期: 2021-04-25
基金资助:国家电网公司总部科技项目“高比例新能源电力系统的自同步电压源型新能源发电关键技术研究”
通讯作者: 辛焕海,教授,E-mail:xinhh@zju.edu.cn      E-mail: xinhh@zju.edu.cn
作者简介: 花赟玥(1998—),女,硕士研究生。
引用本文:   
花赟玥, 杨超然, 何国庆, 辛焕海. 考虑小干扰稳定和频率稳定的虚拟惯量配置分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 437-445.
HUA Yunyue, YANG Chaoran, HE Guoqing, XIN Huanhai. Virtual inertia configuration analysis considering small-signal stability and frequency stability. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 437-445.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.017  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I5/437
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 张栋凯, 陈羽飞, 姜婷玉, 等. 电力系统的电力电子化趋势分析与探讨[J]. 河海大学学报(自然科学版), 2020, 48(4):377-384. ZHANG D K, CHEN Y F, JIANG T Y, et al. Analysis and discussion of electronization trend of power system[J]. Journal of Hohai University(Natural Sciences), 2020, 48(4):377-384. (in Chinese)
[2] SUBUDHI B, PRADHAN R. A comparative study on maximum power point tracking techniques for photovoltaic power systems[J]. IEEE Transactions on Sustainable Energy, 2013, 4(1):89-98.
[3] HE W, YUAN X M, HU J B. Inertia provision and estimation of PLL-based DFIG wind turbines[J]. IEEE Transactions on Power Systems, 2017, 32(1):510-521.
[4] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1):433-434.
[5] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16):5179-5192. SUN H D, WANG B C, LI W F, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16):5179-5192. (in Chinese)
[6] 陶骞, 陶亮, 崔一铂, 等. 虚拟同步发电机动态特性参数分析及配置方法研究[J]. 电测与仪表, 2019, 56(21):8-15, 87. TAO Q, TAO L, CUI Y B, et al. Analysis of dynamic characteristic parameters and research on its configuration methods of virtual synchronous generator[J]. Electrical Measurement & Instrumentation, 2019, 56(21):8-15, 87. (in Chinese)
[7] 王淋, 巨云涛, 吴文传, 等. 面向频率稳定提升的虚拟同步化微电网惯量阻尼参数优化设计. 中国电机工程学报.. DOI:10.13334/j.0258-8013.pcsee.201075. WANG L, JUN Y T, WU WC, et al. Optimal design of inertia and damping parameters of virtual synchronous microgrid for improving frequency stability. Proceedings of the CSEE.. DOI:10.13334/j.0258-8013.pcsee.201075. (in Chinese)
[8] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8):31-38. HUANG L B, XIN H H, HUANG W, et al. Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(8):31-38. (in Chinese)
[9] HUANG L B, XIN H H, LI Z Y, et al. Grid-synchronization stability analysis and loop shaping for PLL-based power converters with different reactive power control[J]. IEEE Transactions on Smart Grid, 2020, 11(1):501-516.
[10] 黄林彬. 高比例电力电子装备电力系统的同步稳定分析与控制设计[D]. 杭州:浙江大学, 2020. HUANG L B. Synchronization stability and control of power systems with high-penetration power electronics[D]. Hangzhou:Zhejiang University, 2020. (in Chinese)
[11] SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control[M]. New York, NY, USA:Wiley, 1996.
[12] 黄林彬, 辛焕海, 鞠平, 等. 电力电子并网装备的同步稳定分析与统一同步控制结构[J]. 电力自动化设备, 2020, 40(9):10-25. HUANG L B, XIN H H, JU P, et al. Synchronization stability analysis and unified synchronization control structure of grid-connected power electronic devices[J]. Electric Power Automation Equipment, 2020, 40(9):10-25. (in Chinese)
[13] 孙扬声. 自动控制理论[M]. 北京:中国电力出版社, 2007. SUN Y S. Automatic control theory[M]. Beijing:China Electric Power Press, 2007. (in Chinese)
[14] 胡寿松. 自动控制原理[M]. 北京:科学出版社, 2007. HU S S. Automatic control theory[M]. Beijing:Science Press, 2007. (in Chinese)
[15] 陈珩. 电力系统稳态分析[M]. 北京:中国电力出版社, 2007. CHEN H. Power system steady state analysis[M]. Beijing:China Electric Power Press, 2007. (in Chinese)
[1] 马千里, 魏韡, 毛航银, 梅生伟. 分布式电源接入的微电网小干扰鲁棒稳定判据与参数安全域自适应覆盖算法[J]. 清华大学学报(自然科学版), 2021, 61(5): 385-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn