Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 141-148    DOI: 10.16511/j.cnki.qhdxxb.2021.21.026
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于欠驱动并联索机构的肩关节助力外骨骼
黎帆1, 李东兴1, 王殿君2, 陈亚2, 唐晓强1,3,4
1. 清华大学 机械工程系, 北京 100084;
2. 北京石油化工学院 机械工程学院, 北京 102617;
3. 清华大学 摩擦学国家重点实验室, 北京 100084;
4. 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Exoskeleton for shoulder joint assistance based on underactuated parallel cable mechanism
LI Fan1, LI Dongxing1, WANG Dianjun2, CHEN Ya2, TANG Xiaoqiang1,3,4
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Mechanical Engineering Academy, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
4. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
全文: PDF(3319 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 并联索驱动助力外骨骼具有与人体兼容性好、运动范围大、自由度多等优点,但往往需要多个电机驱动多根绳索,增大了驱动结构的重量和能耗。以往的设计中无法实现在减少电机个数的同时实现多绳索的力控与多自由度的助力。该文提出一种基于欠驱动并联索机构的肩关节助力外骨骼,采用凸轮和弹簧来实现搬运工作时肩关节的三自由度助力。根据给定的手臂动作,进行运动学、静力学建模与绳索排布优化,并通过设计凸轮的轮廓,仅采用1个电机就实现多根绳索的不同输出速度,并分析和仿真了电机旋转角度与各绳索索力之间的肩关节三自由度助力关系。实验结果表明电机旋转角度与索力对应关系准确,验证了该欠驱动机构用于解决多绳索与多自由度力控问题的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎帆
李东兴
王殿君
陈亚
唐晓强
关键词 动力外骨骼索驱动并联机器人凸轮设计力控    
Abstract:Parallel cable-driven exoskeletons for motion assistance have the advantages of good compatibility with the human body, large range of motion, and many degrees of freedom. However, it often requires multiple motors to drive multiple cables, increasing the weight and energy consumption of the actuator. In the previous design, it was impossible to reduce the number of motors while realizing the multi-cable force control and multi-degree-of-freedom assistance. This paper proposes an exoskeleton for shoulder joint assistance based on an underactuated parallel cable mechanism, utilizing cams and springs to realize the three-degree-of-freedom assistance of the shoulder joint. According to a given action of the arm, this research conducts kinematics modeling, static modeling, cable arrangement optimization and cam profile designing. As a result, only one motor is used to achieve the different output speeds required by multiple cables. The analysis and simulation of the relationship between the rotation angle of the motor and the force of each cable in accordance with the three-degree-of-freedom assisting relationship of the shoulder joint were done. Results show that the corresponding relationship between the motor rotation angle and the cable force is accurate, verifying the feasibility of the under-driven mechanism for multi-cable and multi-degree-of-freedom force control.
Key wordspowered exoskeleton    cable-driven parallel robot    cam design    force control
收稿日期: 2021-01-15      出版日期: 2022-01-14
基金资助:北京市自然科学基金项目(L182041)
通讯作者: 唐晓强,教授,E-mail:tang-xq@tsinghua.edu.cn     E-mail: tang-xq@tsinghua.edu.cn
引用本文:   
黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
LI Fan, LI Dongxing, WANG Dianjun, CHEN Ya, TANG Xiaoqiang. Exoskeleton for shoulder joint assistance based on underactuated parallel cable mechanism. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 141-148.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.026  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/141
  
  
  
  
  
  
  
  
  
  
  
[1] PERRY J C, ROREN J, Member, et al. Upper-limb powered exoskeleton design[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(4):408-417.
[2] 李剑锋, 张凯, 张雷雨, 等. 并联踝康复机器人的设计与运动性能评价[J]. 机械工程学报, 2019, 55(9):29-39. LI J F, ZHANG K, ZHANG L Y, et al. Design and kinematic performance evaluation of parallel ankle rehabilitation robot[J]. Journal of Mechanical Engineering, 2019, 55(9):29-39. (in Chinese)
[3] 马青川, 季林红, 王人成, 等. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 6(57):39-45. MA Q C, JI L H, WANG R C, et al. Foot-wheel driven exoskeleton for rehabilitation training of paraplegic patients[J]. Journal of Tsinghua University (Science and Technolegy), 2017, 6(57):39-45. (in Chinese)
[4] CHANG Y, WANG W, FU C L. A lower limb exoskeleton recycling energy from knee and ankle joints to assist push-off[J]. Journal of Mechanisms and Robotics, 2020, 12(5):1-17.
[5] JURCZAK M. This is how exoskeletons were born and are used in logistics[Z/OL]. (2019-10-18)[2021-01-10]. https://trans.info/en/this-is-how-exoskeletons-were-born-and-are-used-in-logistics-163321.
[6] NEF T, GUIDALI M, RIENER R. ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation[J]. Applied Bionics and Biomechanics, 2009, 6(2):127-142.
[7] DINH B K, XILOYANNIS M, CAPPELLO L, et al. Adaptive backlash compensation in upper limb soft wearable exoskeletons[J]. Robotics & Autonomous Systems, 2017, 92:173-186.
[8] CHIARADIA D, XILOYANNIS M, ANTUVAN C W, et al. Design and embedded control of a soft elbow exosuit[C]//IEEE International Conference on Soft Robotics. Livorno, Italy:IEEE Press, 2018:565-571.
[9] LOTTI N, XILOYANNIS M, DURANDAU G, et al. Adaptive model-based myoelectric control for a soft wearable arm exosuit:A new generation of wearable robot control[J]. IEEE Robotics & Automation Magazine, 2020, 27(1):43-53.
[10] YANG G, HO H L, CHEN W, et al. A haptic device wearable on a human arm[C]//IEEE Conference on Robotics, Automation and Mechatronics. Singapore:IEEE Press, 2004:243-247.
[11] MAO Y, AGRAWAL S K. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation[J]. IEEE Transactions on Robotics, 2012, 28(4):922-931.
[12] CUI X, CHEN W, JIN X, et al. Design of a 7-DoF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance[J]. IEEE/ASME Transactions on Mechatronics, 2016, 22(1):1-1.
[13] WANG J, CUI X, CHEN W, et al. Dynamic analysis of cable-driven humanoid arm based on Lagrange's equation[M]. London:Springer, 2012.
[14] POTT A. Cable-driven parallel robots[M]. Stuttgart:Springer International Publishing, 2018.
[15] TIDWELL P. Wrapping cam mechanisms[M]. Blacksburg:Virginia Tech, 1995.
[1] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[2] 殷家宁, 姜鹏, 陈明, 姚蕊. FAST索驱动并联机器人与Stewart平台结合的动力学建模方法[J]. 清华大学学报(自然科学版), 2022, 62(11): 1764-1771.
[3] 崔志伟, 唐晓强, 侯森浩, 项程远. 索驱动并联机器人可控刚度特性[J]. 清华大学学报(自然科学版), 2018, 58(2): 204-211.
[4] 马青川, 季林红, 王人成, 李伟. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 57(6): 597-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn