Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1152-1158    DOI: 10.16511/j.cnki.qhdxxb.2021.21.029
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于经验模态分解法和摆动脚参数的行走速度估计
汪伟, 杨开明, 朱煜, 钱宇阳
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Walking speed estimation based on empirical mode decomposition method and swing foot parameters
WANG Wei, YANG Kaiming, ZHU Yu, QIAN Yuyang
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2256 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 行走速度估计是提高自适应跑步机功能和性能的有效手段,该文针对自适应跑步机用户行走速度估计,提出了一种基于经验模态分解法和摆动脚参数的行走速度估计方法。该方法推导并阐明了用户行走时摆动脚平均速度与用户实际行走速度之间的关系。为了解决加速度双重积分产生的信号漂移和累积误差的问题,首先基于经验模态分解方法将加速度积分后得到的摆动脚速度分解至不同频段,在去除掉漂移分量后,选择与步频相近的本征模函数对速度进行重构;然后,针对由积分累积误差引起的模态混叠现象,采用集成经验模态分解法对速度积分后得到的摆动脚位移进行分解与重构。通过划分摆动脚位移完成脚尖离地和脚跟着地的步态事件来获取摆动相的时间和脚部位移,并据此计算出摆动脚平均速度用作行走速度估计。进行了5种不同行走速度下的速度估计测试,并与传统方法进行对比,证明了论文所提方法的有效性和优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪伟
杨开明
朱煜
钱宇阳
关键词 经验模态分解法摆动脚参数行走速度估计步态事件划分积分漂移    
Abstract:Predicting walking speed is an effective way to improve the functionality of a feedback-controlled treadmill. A walking speed estimation method is proposed as a solution to this problem based on swing foot parameters using the empirical mode decomposition (EMD) method. The relationship between the user's average swing foot velocity and real walking speed is declared by theoretical derivation. To solve the problem of integral drift and accumulated error during acceleration double integration, the EMD method is used to decompose the acceleration signal into signals of different frequencies. After removing the drifting component, the velocity signal is reconstructed from signals whose frequencies are close to the intrinsic gait frequency. For the modal aliasing phenomenon caused by integral accumulation error, the ensemble EMD method is used to reconstruct the swing foot displacement signal. Based on the heel-strike and toe-off events, the period and foot displacements during the swing phase can be obtained. Thus, the average swing foot velocity is then calculated for walking speed estimation. The proposed method is tested under five different walking speed conditions and compared with the traditional double-integral method. Experimental results prove the effectiveness and benefit of the proposed method.
Key wordsempirical mode decomposition    swing foot parameter    walking speed estimation    gait events detection    integral drift
收稿日期: 2020-12-02      出版日期: 2021-08-26
基金资助:摩擦学国家重点实验室研究基金项目(SKLT2018C07)
通讯作者: 杨开明,副研究员,E-mail:yangkm@tsinghua.edu.cn     E-mail: yangkm@tsinghua.edu.cn
引用本文:   
汪伟, 杨开明, 朱煜, 钱宇阳. 基于经验模态分解法和摆动脚参数的行走速度估计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1152-1158.
WANG Wei, YANG Kaiming, ZHU Yu, QIAN Yuyang. Walking speed estimation based on empirical mode decomposition method and swing foot parameters. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1152-1158.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.029  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1152
  
  
  
  
  
  
  
  
[1] SOUMAN J L, ROBUFFO P, GIORDANO, et al. Cyberwalk:Enabling unconstrained omnidirectional walking through virtual environments[J]. ACM Transactions on Applied Perception, 2011, 8(4):25.
[2] FEASEL J, WHITTON M C, KASSLER L, et al. The integrated virtual environment rehabilitation treadmill system[J]. IEEE Transactions Neural System & Rehabilitation Engineering, 2011, 19(3):290-297.
[3] CHRISTENSEN R R, HOLLERBACH J M, XU Y, et al. Inertial-force feedback for the tread-port locomotion interface[J]. Presence, 2014, 9(1):1-14.
[4] FOSTY B, BEN-SADOUN G, SACCO G, et al. Accuracy and reliability of the RGB-D camera for measuring walking speed on a treadmill[J]. Gait & Posture, 2016, 48:113-119.
[5] XU X, MCGORRY R W, CHOU L S, et al. Accuracy of the Microsoft KinectTM for measuring gait parameters during treadmill walking[J]. Gait & Posture, 2015, 34(2):1-7.
[6] URSKA P, BRITTANY H, JUDITH E D. Validity and reliability of the Kinect for assessment of standardized transitional movements and balance:Systematic review and translation into practice[J]. Physical Medicine & Rehabilitation Clinics of North America, 2019, 30:399-422.
[7] RAY N T, KNARR B A, HIGGINSON J S. Walking speed changes in response to novel user-driven treadmill control[J]. Journal of Biomechanics, 2018, 78:143-149.
[8] CHA M, HAN S, KIM H, et al. User-driven treadmill using walking speed estimated from plantar pressure sensor[J]. Electronics Letters, 2017, 53(8):524-526.
[9] KEIJSERS N L W, STOLWIJK N M, RENZENBRINK G J, et al. Prediction of walking speed using single stance force or pressure measurements in healthy subjects[J]. Gait & Posture, 2016, 43:93-95.
[10] FUCHIOKA S, IWATA A, HIGUCHI Y, et al. The forward velocity of the center of pressure in the midfoot is a major predictor of gait speed in older adults[J]. International Journal of Gerontology, 2015, 9(2):119-122.
[11] JOO S B, OH S E, SIM T, et al. Prediction of gait speed from plantar pressure using artificial neural networks[J]. Expert Systems with Applications, 2014, 41(16):7398-7405.
[12] WANG K L, XU J. A speed regression using acceleration data in a deep convolutional neural network[J]. IEEE Access, 2019, 7:9351-9356.
[13] MANNINI A, SABATINI A M. Walking speed estimation using foot-mounted inertial sensors:Comparing machine learning and strap-down integration methods[J]. Medical Engineering & Physics, 2014, 36(10):1312-1321.
[14] LI Q, YOUNG M, NAING V, et al. Walking speed estimation using a shank-mounted inertial measurement unit[J]. Journal of Biomechanics, 2010, 43(8):1640-1643.
[15] WANG L, SUN Y, LI Q, et al. Estimation of step length and gait asymmetry using wearable inertial sensors[J]. IEEE Sensors Journal, 2018, 18(9):3844-3851.
[16] 吴哲明, 孙振国, 张文增, 等. 基于惯性测量单元旋转的陀螺漂移估计和补偿方法[J]. 清华大学学报(自然科学版), 2014, 54(9):1143-1147. WU Z M, SUN Z G, ZHANG W Z, et al. Gyroscope bias estimation and compensation by rotation of the inertial measurement unit[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(9):1143-1147. (in Chinese).
[17] 班朝, 任国营, 王斌锐, 等. 基于IMU的机器人姿态自适应EKF测量算法研究[J]. 仪器仪表学报, 2020, 41(2):33-39. BAN C, REN G Y, WANG B R, et al. Research on self-adaptive EKF algorithm for robot attitude measurement based on IMU[J]. Chinese Journal of Scientific Instrument, 2020, 41(2):33-39. (in Chinese).
[18] SESSA S, ZECCA M, LIN Z, et al. A methodology for the performance evaluation of inertial measurement units[J]. Journal of Intelligent and Robotic Systems, 2013, 71:143-157.
[19] ANWARY A R, YU H, VASSALLO M. Optimal foot location for placing wearable IMU sensors and automatic feature extraction for gait analysis[J]. IEEE Sensors Journal, 2018, 18(6):2555-2567.
[20] BRZOSTOWSKI K. Toward the unaided estimation of human walking speed based on sparse modeling[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6):1389-1398.
[21] ZHANG R, YANG H, HFLINGER F, et al. Adaptive zero velocity update based on velocity classification for pedestrian tracking[J]. IEEE Sensors Journal, 2017, 17(7):2137-2145.
[22] YOON J, PARK H S, DAMIANO D. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation[J]. Journal of NeuroEngineering and Rehabilitation, 2012, 9:62.
[23] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454:903-995.
[24] WU Z H, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn