Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 116-124    DOI: 10.16511/j.cnki.qhdxxb.2021.21.033
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
驱动桥桥壳焊接残余应力仿真及试验验证
张红卫, 桂良进, 范子杰
清华大学 车辆与运载学院, 汽车安全与节能国家重点实验室, 北京 100084
Simulations and experimental verification of esidual welding stresses in drive axle housings
ZHANG Hongwei, GUI Liangjin, FAN Zijie
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(8341 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 焊接残余应力对驱动桥桥壳结构的强度有着不可忽略的影响,以试验方法研究桥壳结构的焊接残余应力成本较高,且难以获得整个结构的焊接残余应力分布。该文基于有限元法对某商用车驱动桥桥壳的焊接残余应力进行了仿真计算,考虑了焊接过程中相变引起的材料强度变化和体积变化,并与中子衍射法在桥壳焊缝附近的残余应力试验结果进行了对比,验证了仿真结果的准确性。该方法可获得桥壳焊接残余应力整体分布,为桥壳优化设计提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红卫
桂良进
范子杰
关键词 桥壳焊接残余应力有限元分析    
Abstract:Residual welding stresses affect the strength of drive axle housings. The residual welding stresses in axle housings are difficult and expensive to measure, especially the residual stress distribution over the entire structure. This study simulated the residual welding stresses in a drive axle housing of a commercial vehicle using a finite element analysis, including the effects of the strength and volume changes caused by the phase change during welding. The predicted stresses near the weld compared well with experimental data from neutron diffraction measurements, which verified the accuracy of the simulated results. This method can be used to determine the residual welding stress distribution throughout the axle housing and provide guidance for the optimal design of axle housing.
Key wordsaxle housing    welding    residual stress    finite element analysis
收稿日期: 2021-03-30      出版日期: 2022-01-14
基金资助:清华大学校企合作项目(20182000006)
通讯作者: 范子杰,教授,E-mail:zjfan@tsinghua.edu.cn     E-mail: zjfan@tsinghua.edu.cn
引用本文:   
张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
ZHANG Hongwei, GUI Liangjin, FAN Zijie. Simulations and experimental verification of esidual welding stresses in drive axle housings. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 116-124.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.033  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/116
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 刘惟信. 汽车车桥设计[M]. 北京:清华大学出版社, 2004. LIU W X. Automotive axle design[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[2] DENNIS R J, LEGGATT N A, GREGG A. Optimisation of weld modelling techniques:Bead-on-plate analysis[C]//Proceedings of ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference, NY:ASME Press, 2008:967-978.
[3] FICQUET X, SMITH D J, TRUMAN C E, et al. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen[J]. International Journal of Pressure Vessels and Piping, 2009, 86(1):20-30.
[4] DENG D, LUO Y, SERIZAWA H, et al. Numerical simulation of residual stress and deformation considering phase transformation effect[J]. Transactions of JWRI, 2003, 32(2):325-333.
[5] DENG D A. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J]. Materials & Design, 2009, 30(2):359-366.
[6] RIKKEN M, PIJPERS R, SLOT H, et al. A combined experimental and numerical examination of welding residual stresses[J]. Journal of Materials Processing Technology, 2018, 261:98-106.
[7] HANSEN J L. Numerical modelling of welding induced stress[D]. Denmark:Technical University of Denmark, 2003.
[8] ZHANG H W, GUI L J, WANG Q, et al. Investigation of residual stress in butt-welded plates considering phase transformation[J/OL].[2021-03-30]. https://journals.sagepub.com/doi/10.1177/0954406220980504
[9] 刘迁. 焊接过程及残余应力消除的热力耦合研究[D]. 北京:北京理工大学, 2015. LIU Q. Coupled thermo-mechanical analysis of welding process and residual stress relieving[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
[10] LEE K T, PARK C S, KIM H Y. Fatigue and buckling analysis of automotive components considering forming and welding effects[J]. International Journal of Automotive Technology, 2017, 18(1):97-102.
[11] 黄薇, 黄志超, 倪昀, 等. 焊接工艺参数对后桥壳残余应力影响的数值模拟[J]. 热加工工艺, 2006, 35(19):74-76. HUANG W, HUANG Z C, NI Y, et al. Numerical simulation of influence of welding process parameters on residual stress of rear axle housing[J]. Hot Working Technology, 2006, 35(19):74-76. (in Chinese)
[12] 郭微, 王亮, 郑泉. 基于模态试验的驱动桥壳焊接残余应力预测[J]. 山东交通学院学报, 2015, 23(01):6-9. GUO W, WANG L, ZHENG Q. Residual stress prediction for drive axle housing welding based on modal test[J]. Journal of Shandong Jiaotong University, 2015, 23(01):6-9. (in Chinese)
[13] 王军强. 大型壳体结构焊接变形及残余应力调控方法研究[D]. 北京:北京交通大学, 2016. WANG J Q. Research on regulation method of welding distortion and residual stress for large shell structure[D]. Beijing:Beijing Jiaotong University, 2016. (in Chinese)
[14] 王浩, 佟鑫, 卫亮, 等.高速列车车顶局部结构焊接研究[J].焊接技术, 2018, 47(01):36-39. WANG H, TONG X, WEI L, et al. Study on welding of partial structure of high speed train roof[J]. Welding Technology, 201847(01):36-39. (in Chinese)
[15] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15B:299-305.
[16] 张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版)(已录用) ZHANG H W, GUI L J, FAN Z J. Research and verification of welding heat source parameter optimization method[J]. Journal of Tsinghua University (Science and Technonogy). (In press). (in Chinese)
[17] LINDGREN L-E. Finite element modeling and simulation of welding part 1:Increased complexity[J]. Journal of Thermal Stresses, 2001, 24(2):141-192.
[18] LINDGREN L-E. Finite element modeling and simulation of welding part 2:Improved material modeling[J]. Journal of Thermal Stresses, 2001, 24(3):195-231.
[19] 张建勋, 刘川. 焊接应力变形有限元计算及其工程应用[M]. 北京:科学出版社, 2015. ZHANG J X, LIU C. Finite element calculation and engineering application of welding stress and deformation[M]. Beijing:Science Press, 2015. (in Chinese)
[1] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[2] 刘洁钰, 李克俭, 韩潮宇, 蔡志鹏. 铁/镍基合金过渡接头的制造及微观组织表征[J]. 清华大学学报(自然科学版), 2023, 63(12): 1974-1983.
[3] 冯消冰, 王建军, 王永科, 陈苏云, 刘爱平. 面向大型结构件爬行机器人智能焊接技术[J]. 清华大学学报(自然科学版), 2023, 63(10): 1608-1625.
[4] 张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版), 2022, 62(2): 367-373.
[5] 杨智勇, 李武鹏, 张宇, 李志强, 李卫京. 搅拌头结构对搅拌摩擦焊缺陷形成机制的影响[J]. 清华大学学报(自然科学版), 2022, 62(2): 374-384.
[6] 冯消冰, 潘际銮, 高力生, 田伟, 魏然, 潘百蛙, 陈永, 陈苏云. 爬行焊接机器人在球罐自动焊接中的应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1132-1143.
[7] 陈志华,温锁林,刘红波,王小盾,高昊天,王留成,朱邵宁. 北京大兴国际机场鼓形焊接空心球节点力学性能[J]. 清华大学学报(自然科学版), 2020, 60(12): 967-976.
[8] 鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
[9] 朱志明, 符平坡, 夏铸亮, 程世佳. 基于极点配置的逆变焊接电源最小拍控制及其稳定鲁棒性[J]. 清华大学学报(自然科学版), 2019, 59(2): 85-90.
[10] 吕江伟, 周凯. 高力密度直线开关磁阻电机的最佳极宽比[J]. 清华大学学报(自然科学版), 2018, 58(5): 469-476.
[11] 汤莹莹, 朱志明, 杨中宇, 符平坡. TIG电弧辅助MIG焊非接触引弧的参数适应性[J]. 清华大学学报(自然科学版), 2018, 58(5): 477-481.
[12] 郭吉昌, 朱志明, 王鑫, 马国锐. 全位置焊接机器人逆运动学数值求解及轨迹规划方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 292-297.
[13] 朱志明, 郭吉昌, 马国锐, 刘博. 箱型钢结构环缝焊接的机器人运动学分析与轨迹规划[J]. 清华大学学报(自然科学版), 2017, 57(8): 785-791.
[14] 赵海燕, 吴骏巍, 陆向明, 简波, 李宏伟. 基于局部-整体有限元法的薄壁筒焊接变形计算[J]. 清华大学学报(自然科学版), 2017, 57(5): 449-453.
[15] 杨中宇, 朱志明, 刘博, 汤莹莹. 稳压式变极性焊接电源中的IGBT功率损耗和温升模型[J]. 清华大学学报(自然科学版), 2017, 57(5): 471-475,482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn