Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 88-97    DOI: 10.16511/j.cnki.qhdxxb.2021.21.042
  专题:社会媒体处理 本期目录 | 过刊浏览 | 高级检索 |
评论感知的异构变分自编码器推荐模型
刘树栋1,2, 张嘉妮1,2, 陈旭1,2
1. 中南财经政法大学 人工智能法商应用研究中心, 武汉 430073;
2. 中南财经政法大学 信息与安全工程学院, 武汉 430073
Review-aware heterogeneous variational autoencoder recommendation model
LIU Shudong1,2, ZHANG Jiani1,2, CHEN Xu1,2
1. Centre for Artificial Intelligence and Applied Research, Zhongnan University of Economics and Law, Wuhan 430073, China;
2. School of Information and Security Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
全文: PDF(3299 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着推荐系统的研究与发展,人们越来越关注个性化服务信息的准确推送,而对于推荐中数据稀疏的问题,传统评分信息协同推荐的方法很大程度上不能解决。因此人们将一些上下文信息引入到推荐系统中,而蕴含用户偏好的评论文本信息也被广泛用于缓解数据稀疏和冷启动的问题。自编码器作为一种无监督学习方法,在异常检测、人脸识别、数据增强和数据生成等领域具有优秀的表现,其中变分自编码器可以通过神经网络学习用户和项目潜在特征的分布。目前较少有研究利用用户评论信息融合的变分自编码器实现评论感知的推荐,该文提出一种评论感知的异构变分自编码推荐模型。首先,通过注意力机制和神经网络将评论上下文信息引入变分自编码器中,保留变分自编码器对评分信息潜在特征分布的学习,并在早期和后期两阶段进行特征融合,构建多模态的异构变分自编码器模型。其次,针对多模态模型训练,进一步优化引入复合先验项和平衡系数计算项。实验结果表明,该模型在召回率和归一化折损累计增益评价指标上都优于其他对比模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘树栋
张嘉妮
陈旭
关键词 变分自编码器特征融合神经网络推荐系统评论感知    
Abstract:With the advancement of research and development in recommendation systems, more attention has been paid to the precise recommendation of personalized information. The traditional method of collaborative filtering cannot meet the demand due to the scarcity of data in recommendation; thus, contextual information has been introduced to recommendation systems. Review text information containing user preferences is also widely used to alleviate data sparseness and cold start problems. As an unsupervised learning method, the autoencoder performs well in anomaly detection, face recognition, data augmentation, and data generation. The variational autoencoder can learn the distribution of latent vectors of users and items via neural networks. At present, only a few researchers are working for review-aware recommendations using variational autoencoder. This paper proposes a review-aware heterogeneous variational autoencoder recommendation model that introduces comment context information into the variational autoencoder through attention mechanism and neural network. The learning about latent feature distribution of the rating information by the variational autoencoder is retained, and feature fusion is performed in the early and late stages to construct a multimodal heterogeneous variational autoencoder model. Besides, the compound prior term and the balance factor calculation term for multimodal model training are further optimized. The experimental results showed that the proposed model outperforms the state-of-the-art other baseline models in recall and the normalized cumulative gain.
Key wordsvariational autoencoder    feature fusion    neural network    recommender systems    review-aware
收稿日期: 2021-05-29      出版日期: 2022-01-14
基金资助:国家自然科学青年基金(61602518);国家自然科学面上基金(71872180);中南财经政法大学中央高校基本科研业务费专项资金资助(202151410,2722021BZ040)
引用本文:   
刘树栋, 张嘉妮, 陈旭. 评论感知的异构变分自编码器推荐模型[J]. 清华大学学报(自然科学版), 2022, 62(1): 88-97.
LIU Shudong, ZHANG Jiani, CHEN Xu. Review-aware heterogeneous variational autoencoder recommendation model. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 88-97.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.042  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/88
  
  
  
  
  
  
[1] ADOMAVICIUS G, TUZHILIN A. Personalization technologies:A process-oriented perspective[J]. Communications of the ACM, 2005, 48(10):83-90.
[2] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734- 749.
[3] CHEN H Y, LI J. Adversarial tensor factorization for context-aware recommendation[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York, USA:Association for Computing Machinery, 2019:363-367.
[4] XIN X, CHEN B, HE X N, et al. CFM:Convolutional factorization machines for context-aware recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China:AAAI, 2019:3926-3932.
[5] WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM, 2019:235-244.
[6] FAN W Q, MA Y, LI Q, HE Y, ZHAO E. Graph neural networks for social recommendation[C]//Proceedings of the World Wide Web Conference. New York, USA:Association for Computing Machinery, 2019:417-426.
[7] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1):1-20. WANG L C, MENG X W, ZHANG Y J. Context-aware recommender systems[J]. Journal of Software, 2012, 23(1):1-20. (in Chinese)
[8] KULKARNI S, RODD S F. Context aware recommendation systems:A review of the state of the art techniques[J]. Computer Science Review, 2020, 37:100255.
[9] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6):1356-1372. MENG X W, LIU S D, ZHANG Y J, et al. Research on social recommender systems[J]. Journal of Software, 2015, 26(6):1356-1372. (in Chinese)
[10] RENDLE S. Factorization machines[C]//Proceedings of the 10th IEEE International Conference on Data Mining. New York, USA:IEEE Press, 2010:995-1000.
[11] SHEN R P, ZHANG H P, YU H, et al. Sentiment based matrix factorization with reliability for recommendation[J]. Expert Systems with Applications, 2019, 135:249-258.
[12] LIAN D F, ZHAO C, XIE X, et al. GeoMF:Joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining. New York, USA:Association for Computing Machinery, 2014:831-840.
[13] GUO H F, TANG R M, YE Y M, et al. DeepFM:A factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI). California, USA:IJCAI.org, 2017:1725-1730.
[14] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide. Republic and Canton of Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2017:173-182.
[15] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1):203-230. YUAN F N, ZHANG L, SHI J T, et al. Theories and applications of auto-encoder neural networks:A literature survey[J]. Chinese Journal of Computers, 2019, 42(1):203-230. (in Chinese)
[16] LI H, WANG Y L, LYU Z Y, et al. Multi-task learning for recommendation over heterogeneous information network[J/OL] IEEE Transactions on Knowledge and Data Engineering, (2020-3-31). https://ieeexplore. ieee.org/document/9051843.
[17] ZHANG G J, LIU Y, JIN X N. A survey of auto-encoder-based recommender systems[J]. Frontiers of Computer Science, 2020, 14(2):430-450.
[18] WANG H, SHI X J, YEUNG D Y. Collaborative recurrent auto-encoder:recommend while learning to fill in the blanks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc., 2016:415-423.
[19] LI X P, SHE J. Collaborative variational auto-encoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:Association for Computing Machinery, 2017:305-314.
[20] ZHUANG F Z, ZHANG Z Q, QIAN M, et al. Representation learning via dual-autoencoder for recommendation[J]. Neural Networks, 2017, 90:83-89.
[21] ZHU Z, WANG J, CAVERLEE J. Improving top-k recommendation via joint collaborative auto-encoders[C]//Proceedings of The World Wide Web Conference. New York, USA:Association for Computing Machinery, 2019:3483-3492.
[22] LACIC E, REITER-HAAS M, KOWALD D, et al.. Using auto-encoders for session-based job recommendations[J]. User Modeling and User-Adapted Interaction, 2020, 30(4):617-658.
[23] JHAMB Y, EBESU T, FANG Y. Attentive contextual denoising auto-encoder for recommendation[C]//Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval. New York, USA:ACM, 2018:27-34.
[24] ZHOU J P, CHENG Z Y, PEREZ F, et al. TAFA:Two-headed attention fused auto-encoder for context-aware recommendations[C]//Proceedings of Fourteenth ACM Conference on Recommender Systems. New York, USA:Association for Computing Machinery, 2020:338-347.
[25] DENG S G, HUANG L T, XU G D, et al. On deep learning for trust-aware recommendations in social networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1164-1177.
[26] WANG M Q, WU Z Y, SUN X X, et al. Trust-aware collaborative filtering with a denoising auto-encoder[J]. Neural Processing Letters, 2019, 49(2):835-849.
[27] BELLINI V, SCHIAVONE A, DI NOIA T, et al. Knowledge-aware auto-encoders for explainable recommender systems[C]//Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems. New York, USA:Association for Computing Machinery, 2018:24-31.
[28] CHEN Y F, DE RIJKE M. A collective variational auto-encoder for top-n recommendation with side information[C]//Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems. New York, USA:Association for Computing Machinery, 2018:3-9.
[29] GALKE L, MAI F, VAGLIANO I, et al. Multi-modal adversarial auto-encoders for recommendations of citations and subject labels[C]//Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. New York, USA:Association for Computing Machinery, 2018:197-205.
[30] YANG C, YU X H, LIU Y, et al. Collaborative filtering with weighted opinion aspects[J]. Neurocomputing, 2016, 210:185-196.
[31] WANG Y H, LIU Y, YU X H. Collaborative filtering with aspect-based opinion mining:A tensor factorization approach[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Brussels, Belgium:IEEE Press, 2012:1152-1157.
[32] NIE Y P, LIU Y, YU X H. Weighted aspect-based collaborative filtering[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR). New York, USA:ACM, 2014:1071-1074.
[33] CHENG Z Y, DING Y, ZHU L, KANKANHALLI M. Aspect-aware latent factor model:Rating prediction with ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA:Association for Computing Machinery, 2018:639-648.
[34] WANG W, WANG H W. Opinion-enhanced collaborative filtering for recommender systems through sentiment analysis[J]. New Review of Hypermedia and Multimedia, 2015, 21(3-4):278-300.
[35] ALMAHAIRI A, KASTNER K, CHO K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. New York, USA:Association for Computing Machinery, 2015:147-154.
[36] HYUN D, PARK C, YANG M C. Review sentiment-guided scalable deep recommender system[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York, USA:ACM, 2018:965-968.
[37] TAY Y, LUU A T, HUI S C. Multi-pointer co-attention networks for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA:Association for Computing Machinery, 2018:2309-2318.
[38] GUAN X Y, CHENG Z Y, HE X N, et al. Attentive aspect modeling for review-aware recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3):1-27.
[39] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE Press, 2017:4700-4708.
[40] SHENBIN I, ALEKSEEV A, TUTUBALINA E, et al. RecVAE:A new variational autoencoder for top-n recommendations with implicit feedback[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York, USA:Association for Computing Machinery, 2020:528-536.
[41] JÄRVELIN K, KEKÄLÄINEN J. Cumulated gain-based evaluation of IR techniques[J]. ACM Transactions on Information Systems, 2002, 20(4):422-446.
[42] KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA:Association for Computing Machinery, 2016:233-240.
[43] MA C, KANG P, WU B, et al. Gated attentive-autoencoder for content-aware recommendation[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York, USA:Association for Computing Machinery, 2019:519-527.
[1] 庄文宇, 张如九, 徐建军, 殷亮, 魏海宁, 刘耀儒. 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1302-1313.
[2] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[3] 王立平, 张超, 蔡恩磊, 史慧杰, 王冬. 面向自主工业软件的知识提取和知识库构建方法[J]. 清华大学学报(自然科学版), 2022, 62(5): 978-986.
[4] 张羽中, 柳世强, 张俊昌, 朱荣. 人体下肢运动协调模型[J]. 清华大学学报(自然科学版), 2022, 62(3): 458-462.
[5] 季宇, 张悠慧, 郑纬民. 基于忆阻器的近似计算方法[J]. 清华大学学报(自然科学版), 2021, 61(6): 610-617.
[6] 王晓萌, 管志斌, 辛伟, 王嘉捷. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1267-1272.
[7] 杜晓闯, 涂红兵, 黎岢, 张洁, 王康, 刘鹤敏, 梁漫春, 汪向伟. 基于径向基神经网络仿真γ能谱模板库的核素识别方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1308-1315.
[8] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[9] 尹学振, 赵慧, 赵俊保, 姚婉薇, 黄泽林. 多神经网络协作的军事领域命名实体识别[J]. 清华大学学报(自然科学版), 2020, 60(8): 648-655.
[10] 孙博文, 张鹏, 成茗宇, 李新童, 李祺. 基于代码图像增强的恶意代码检测方法[J]. 清华大学学报(自然科学版), 2020, 60(5): 386-392.
[11] 林鹏, 魏鹏程, 樊启祥, 陈闻起. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8): 628-634.
[12] 王文广, 陈运文, 蔡华, 曾彦能, 杨慧宇. 基于混合深度神经网络模型的司法文书智能化处理[J]. 清华大学学报(自然科学版), 2019, 59(7): 505-511.
[13] 梁杰, 陈嘉豪, 张雪芹, 周悦, 林家骏. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7): 523-529.
[14] 王晓明, 赵歆波. 基于深度神经网络的个体阅读眼动预测[J]. 清华大学学报(自然科学版), 2019, 59(6): 468-475.
[15] 申嘉荣, 徐千军. 碾压混凝土坝层面抗剪断强度的人工神经网络与模糊逻辑系统预测[J]. 清华大学学报(自然科学版), 2019, 59(5): 345-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn