Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 862-870    DOI: 10.16511/j.cnki.qhdxxb.2021.21.044
  专题:漏洞分析与风险评估 本期目录 | 过刊浏览 | 高级检索 |
多密钥隐私保护决策树评估方案
曹来成, 李运涛, 吴蓉, 郭显, 冯涛
兰州理工大学 计算机与通信学院, 兰州 730050
Multi-key privacy protection decision tree evaluation scheme
CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao
School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(2802 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了保护机器学习中决策树数据和模型的隐私,并减少计算和通信开销,提出了一种多密钥隐私保护决策树评估(multi-key privacy-preserving decision tree evaluation,MPDE)方案。利用分布式双陷门公钥密码(distributed two-trapdoor public-key crypto,DT-PKC)系统对所有数据进行加密。基于跨域安全加法协议实现来自不同公钥加密的两个密文的加法,改进原有的安全比较协议以支持多用户多密钥,保护了请求信息、分类结果和决策树模型的隐私。引入可信第三方密钥生成中心,减少了实体之间的通信开销,且在密钥分发完后离线。采用服务代理商代替用户与云服务器交互,降低了用户与云服务器之间的通信开销和用户的计算开销。安全与性能分析表明该方案具有高隐私性和高效性。同时,仿真实验显示该方案具有更低的计算开销。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹来成
李运涛
吴蓉
郭显
冯涛
关键词 机器学习云计算决策树多密钥同态加密    
Abstract:A multi-key privacy-preserving decision tree evaluation (MPDE) scheme was developed to protect the privacy of decision tree data and models in machine learning and to reduce the computational and communications overhead. A distributed two-trapdoor public-key crypto (DT-PKC) was used to encrypt all the data. A secure addition- across-domains protocol was then used to add two ciphertexts from different public key cryptography systems. In addition, the original security comparison protocol was improved to support multi-user, multi-key systems to protect the privacy of the requested information, classification results and decision tree model. A trusted third party key generation center was introduced to reduce the communication overhead between entities which is completely offline after the key distribution. A service agent was then used to interact with the cloud server instead of the users which reduced the communications overhead between the user and the cloud server. Security and performance analyses show that the scheme is efficient and ensures privacy. Simulations show that the scheme has less computational overhead than previous schemes.
Key wordsmachine learning    cloud computing    decision tree    multi-key    homomorphic encryption
收稿日期: 2020-11-15      出版日期: 2022-04-26
基金资助:国家自然科学基金资助项目(61562059,61461027)
作者简介: 曹来成(1965—),男,教授。E-mail:caolch@lut.edu.cn
引用本文:   
曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.044  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/862
  
  
  
  
  
  
  
  
[1] 贾春福, 王雅飞, 陈阳, 等. 机器学习算法在同态加密数据集上的应用[J]. 清华大学学报(自然科学版), 2020, 60(6):456-463. JIA C F, WANG Y F, CHEN Y, et al. Machine learning algorithm for a homomorphic encrypted data set[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(6):456-463. (in Chinese)
[2] WEN Y D, ZHANG K P, LI Z F, et al. A comprehensive study on center loss for deep face recognition[J]. International Journal of Computer Vision, 2019, 127(6-7):668-683.
[3] VAIDYA J, SHAFIQ B, FAN W, et al. A random decision tree framework for privacy-preserving data mining[J]. IEEE Transactions on Dependable and Secure Computing, 2014, 11(5):399-411.
[4] WANG T, MEI Y X, JIA W J, et al. Edge-based differential privacy computing for sensor-cloud systems[J]. Journal of Parallel and Distributed Computing, 2020, 136:75-85.
[5] BOST R, POPA R A, TU S, et al. Machine learning classification over encrypted data[C]//22nd Annual Network and Distributed System Security Symposium. San Diego, USA:The Internet Society, 2015:1-34.
[6] TUENO A, KERSCHBAUM F, KATZENBEISSER S. Private evaluation of decision trees using sublinear cost[C]//Proceedings on Privacy Enhancing Technologies (PoPETs). Sciendo:Warsaw, 2019:266-286.
[7] 刘睿瑄, 陈红, 郭若杨, 等. 机器学习中的隐私攻击与防御[J]. 软件学报, 2020, 31(3):866-892. LIU R X, CHEN H, GUO R Y, et al. Survey on privacy attacks and defenses in machine learning[J]. Journal of Software, 2020, 31(3):866-892. (in Chinese)
[8] DOWSLEY R, LACERDA F, NASCIMENTO A C A. Commitment and oblivious transfer in the bounded storage model with errors[J]. IEEE Transactions on Information Theory, 2018, 64(8):5970-5984.
[9] DE COCK M, DOWSLEY R, HORST C, et al. Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(2):217-230.
[10] ALOUFI A, HU P Z, WONG H W H, et al. Blindfolded evaluation of random forests with multi-key homomorphic encryption[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(4):1821-1835.
[11] XUE L, LIU D X, NI J B, et al. Consent-based privacy-preserving decision tree evaluation[C]//2020 IEEE International Conference on Communications. Dublin, Ireland:IEEE Press, 2020:1-6.
[12] LIU L, CHEN R M, LIU X M, et al. Towards practical privacy-preserving decision tree training and evaluation in the cloud[J]. IEEE Transactions on Information Forensics and Security, 2020, 15:2914-2929.
[13] ZOU Y, ZHAO Z, SHI S, et al. Highly secure privacy-preserving outsourced K-means clustering under multiple keys in cloud computing[J]. Security and Communication Networks, 2020, 2020:1238505.
[14] KUANG W, CHAN Y L, TSANG S H, et al. Machine learning-based fast intra mode decision for HEVC screen content coding via decision trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(5):1481-1496.
[15] HASSAN A, HAMZA R, YAN H Y, et al. An efficient outsourced privacy preserving machine learning scheme with public verifiability[J]. IEEE Access, 2019, 7:146322-146330.
[1] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[2] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[3] 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 1003-1011.
[4] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[5] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[6] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[7] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[8] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[9] 刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕. 基于机器学习和瞳孔响应的简易高性能自闭症分类模型[J]. 清华大学学报(自然科学版), 2022, 62(10): 1730-1738.
[10] 马晓悦, 孟啸. 用户参与视角下多图推文的图像位置和布局效应[J]. 清华大学学报(自然科学版), 2022, 62(1): 77-87.
[11] 汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报(自然科学版), 2021, 61(6): 543-555.
[12] 李清, 樊一萍, 李大川, 蒋欣, 刘恩钰, 陈甲. 基于微服务的飞行管理系统仿真:体系与方法[J]. 清华大学学报(自然科学版), 2020, 60(7): 589-596.
[13] 贾春福, 王雅飞, 陈阳, 孙梦洁, 葛凤仪. 机器学习算法在同态加密数据集上的应用[J]. 清华大学学报(自然科学版), 2020, 60(6): 456-463.
[14] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[15] 宋宇波, 祁欣妤, 黄强, 胡爱群, 杨俊杰. 基于二阶段多分类的物联网设备识别算法[J]. 清华大学学报(自然科学版), 2020, 60(5): 365-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn