Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1106-1114    DOI: 10.16511/j.cnki.qhdxxb.2021.22.009
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于遗传算法的并混联机床电机伺服控制参数整定
王立平, 孔祥昱, 于广
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm
WANG Liping, KONG Xiangyu, YU Guang
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8216 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 驱动电机伺服控制对机床加工效率、加工质量都有影响。伺服电机控制方法中应用最广泛的是比例积分微分(PID)控制,其控制效果与控制参数直接相关,而以往由工程师凭经验进行参数整定,费时费力。该文提出一种基于遗传算法的伺服控制参数整定方法。建立了理论模型,并综合多种条件进行了修正。针对并混联机床的特点提出包含报警指标、择优指标2类指标的适应度函数,得到遗传算法整定的伺服控制参数,并在五轴混联机床上进行了实验。实验结果显示:优化参数下,伺服电机跟随性能优于人工整定参数,进而验证了所提出的基于遗传算法的参数整定方法可以得到更好的性能且省时省力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立平
孔祥昱
于广
关键词 伺服电机比例积分微分(PID)参数整定遗传算法并联机床    
Abstract:The motor servo control of machine tools influences the processing efficiency and processing quality of the machine tool. Most servo motor controllers use the proportional integral derivative (PID) control which depends on accurate determination of the control parameters. However, accurate determination of the control parameters requires much time, effort and experience with manual tuning usually required to provide the desired accuracy. This paper presents a method for tuning servo control parameters based on a genetic algorithm. A theoretical model is developed and refined based on the machine tool conditions. The fitness function is developed based on the parallel and hybrid machine tool characteristics with alarm indexes and optimal indexes. The servo control parameters given by the genetic algorithm are then tested on a 5-axis hybrid machine tool. The results show that the optimized parameters give better servo motor following accuracy than the engineer's parameters.Thus, this parameter tuning method based on a genetic algorithm saves time and effort while giving more accurate servo control parameters.
Key wordsservo motor    proportional integral derivative (PID) parameter tuning    genetic algorithm    parallel machine tool
收稿日期: 2020-12-14      出版日期: 2021-08-26
基金资助:国家自然科学基金资助项目(51975319,51905302)
通讯作者: 于广,助理研究员,E-mail:gyu@tsinghua.edu.cn     E-mail: gyu@tsinghua.edu.cn
引用本文:   
王立平, 孔祥昱, 于广. 基于遗传算法的并混联机床电机伺服控制参数整定[J]. 清华大学学报(自然科学版), 2021, 61(10): 1106-1114.
WANG Liping, KONG Xiangyu, YU Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1106-1114.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.009  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1106
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李烨, 严欣平. 永磁同步电动机伺服系统研究现状及应用前景[J]. 微电机(伺服技术), 2001(4):30-33. LI Y, YAN X P. The research status and application prospects of permanent magnet synchronous motor servo system[J]. Micromotor (Servo Technology), 2001(4):30-33. (in Chinese)
[2] 杨耕, 罗应立. 电机与运动控制系统[M]. 2版. 北京:清华大学出版社, 2014. YANG G, LUO Y L. Motor and motion control system[M]. 2nd ed. Beijing: Tsinghua University Press, 2014. (in Chinese)
[3] 阮毅, 杨影, 陈伯时. 电力拖动自动控制系统:运动控制系统[M]. 5版. 北京:机械工业出版社, 2016. RUAN Y, YANG Y, CHEN B S. Electric drive automatic control system:Motion control system[M]. 5th ed. Beijing:Mechanical Industry Press, 2016. (in Chinese)
[4] 梁艳, 李永东. 无传感器永磁同步电机矢量控制系统概述[J]. 电气传动, 2003(4):4-9. LIANG Y, LI Y D. Summary of vector control system of sensorless permanent magnet synchronous motor[J]. Electric Drive, 2003(4):4-9. (in Chinese)
[5] BENNETT S. Development of the PID controller[J]. IEEE Control Systems Magazine, 1993, 13(6):58-62.
[6] ZIEGLER J G, NICHOLS N B. Optimum setting for automatic controllers[J]. Transaction of ASME, 1944, 64:759-768.
[7] 李亚聪, 康亚彪. 数控机床伺服参数调整方法[J]. 科技创新导报, 2020, 17(2):66-68. LI Y C, KANG Y B. Servo parameter adjustment method of CNC machine tool[J]. Science and Technology Innovation Herald, 2020, 17(2):66-68. (in Chinese)
[8] KUMAR R, GUPTA R A, SINGH B. Intelligent tuned PID controllers for PMSM drive:A critical analysis[C]//2006 IEEE International Conference on Industrial Technology. Mumbai, India, 2006:2055-2060.
[9] NAGARAJ B, MURUGANANTH N. A comparative study of PID controller tuning using GA, EP, PSO and ACO[C]//2010 International Conference on Communication Control and Computing Technologies. Ramanathapuram, India, 2010:305-313.
[10] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008(10):2911-2916. GE J K, QIU Y H, WU C M, et al. Overview of genetic algorithm research[J]. Application Research of Computers, 2008(10):2911-2916. (in Chinese)
[11] HOLLAND J H. Adaptation in natural and artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. Boston, USA:MIT Press, 1992.
[12] DE JONG K A. Analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor, USA:University of Michigan, 1975.
[13] GOLDENBERG D E. Genetic algorithms in search, optimization and machine learning[M]. Upper Saddle River, USA: Addison-Wesley, 1989.
[14] 郝齐, 关立文, 王立平. 基于遗传算法并联机床电机伺服系统控制参数整定[J]. 清华大学学报(自然科学版), 2010, 50(11):1801-1806. HAO Q, GUAN L W, WANG L P. Control parameter tuning of parallel machine tool motor servo system based on genetic algorithm[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(11):1801-1806. (in Chinese)
[15] 齐战, 李茂军, 肖雨荷, 等. 基于改进状态空间模型遗传算法的分数阶PID控制器优化设计[J]. 控制与信息技术, 2019(6):18-23. QI Z, LI M J, XIAO Y H, et al. Optimal design of fractional PID controller based on improved state-space model genetic algorithm[J]. Control and Information Technology, 2019(6): 18-23. (in Chinese)
[16] 郑光廷, 王琦, 陈龙胜, 等. 基于遗传算法整定PID的倾转翼飞机过渡段定高控制[J/OL].[2021-01-21]. 航空兵器:1-7. http://kns.cnki.net/kcms/detail/41.1228.TJ.20200902.1448.011.html. ZHENG G T, WANG Q, CHEN L S, et al. Tuning PID based on genetic algorithm for tilt-wing aircraft transition section height control[J/OL].[2021-01-21]. Aviation Weapon:1-7. http://kns.cnki.net/kcms/detail/41.1228.TJ.20200902.1448.011.html. (in Chinese)
[17] 孙雨萌, 张旭秀. 改进遗传算法整定自抗扰控制器参数及应用[J]. 自动化与仪表, 2020, 35(3):13-17, 45. SUN Y M, ZHANG X X. Tuning parameters and application of auto disturbance rejection controller by improved genetic algorithm[J]. Automation and Instrumentation, 2020, 35(3):13-17, 45. (in Chinese)
[18] JAEN-CUELLAR A Y, DE JESÚS ROMERO-TRONCOSO R, MORALES-VELAZQUEZ L, et al. PID-controller tuning optimization with genetic algorithms in servo systems[J]. International Journal of Advanced Robotic Systems, 2013, 10(9):324.
[19] 王立平, 吴军, 于广. 一种三自由度并联主轴头机构:中国201510096720.7[P]. 2015-03-04. WANG L P, WU J, YU G. A three-degree-of-freedom parallel spindle head mechanism:China 201510096720.7[P]. 2015-03-04. (in Chinese)
[1] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[2] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[3] 汪俊东, 赵越喆. 阶梯状声扩散体排布方式对扩散性能影响分析[J]. 清华大学学报(自然科学版), 2021, 61(3): 261-268.
[4] 吐松江·卡日, 高文胜, 张紫薇, 莫文雄, 王红斌, 崔屹平. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623-629.
[5] 冯珂, 王守清, 薛彦广. 基于多方满意的PPP项目股权配置优化研究[J]. 清华大学学报(自然科学版), 2017, 57(4): 376-381.
[6] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[7] 刘哲, 金达锋, 范志瑞. 基于代理模型的复合材料带加强筋板铺层优化[J]. 清华大学学报(自然科学版), 2015, 55(7): 782-789.
[8] 胡庆东, 曾志, 马豪, 程建平, 李君利, 张辉, 王鑫, 武祯. 室内环境中子能谱及剂量率的多球谱仪测量[J]. 清华大学学报(自然科学版), 2015, 55(12): 1332-1334,1341.
[9] 丁荣涛. 基于合作博弈的港口物流链云服务组织方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 366-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn