Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (6): 643-652    DOI: 10.16511/j.cnki.qhdxxb.2021.22.011
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
聚合物软材料磨损硬质材料机理研究进展
郭飞1, 程甘霖1, 张兆想1,2, 黄兴3, 贾晓红1
1. 清华大学 摩擦学国家重点实验室, 北京 100084;
2. 机械研究总院 先进成形技术与装备国家重点实验室, 北京 100044;
3. 广州机械科学研究院有限公司 国家橡塑密封工程技术研究中心, 广州 510700
Research progress on wear mechanism of hard materials worn by soft polymers
GUO Fei1, CHENG Ganlin1, ZHANG Zhaoxiang1,2, HUANG Xing3, JIA Xiaohong1
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology, Beijing 100044, China;
3. National Engineering Research Center of Rubber and Plastic Sealing, Guangzhou Mechanical Engineering Research Institute Co., Ltd., Guangzhou 510700, China
全文: PDF(1263 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 聚合物摩擦磨损问题研究一直是摩擦学领域热点方向之一。在与金属、陶瓷等硬质材料组成的摩擦副中,由于硬度存在着数量级之差,绝大多数关于材料磨损的研究聚焦于硬度较低的聚合物磨损上。实际上,摩擦过程中硬度更大的硬质材料表面有时也会发生磨损,即出现“软磨硬”的特殊现象。针对该问题,综述了近70年来国内外关于聚合物软材料磨损硬质材料表面的研究进展,总结了“软磨硬”的磨损机理及影响因素,归纳了“软磨硬”特殊磨损现象研究面临的挑战和亟待解决的关键问题,并提出了聚合物软材料磨损硬质材料磨损机理研究未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭飞
程甘霖
张兆想
黄兴
贾晓红
关键词 聚合物软材料硬质材料磨损机理影响因素    
Abstract:Polymer friction and wear has always been important in tribology research. Friction studies of hard material pairs such as metals and ceramics have generally focused on the lower hardness wear due to the order of magnitude difference in hardness. However, the friction can also wear the hard material surface which has led to increasing interest in the wear of hard materials by soft polymers. This paper reviews the research on the wear of hard materials by soft polymer materials for the past 70 years, and summarizes the observed wear mechanism and the factors influencing the hard material wear. This paper then summarizes the challenges and key problems for this special wear phenomenon and future research trends investigating the wear mechanism of hard material worn by soft polymers.
Key wordspolymer    soft materials    hard materials    wear mechanism    influencing factors
收稿日期: 2020-12-11      出版日期: 2021-04-28
基金资助:国家重点研发计划(2019YFB1505301);国家自然科学基金项目(U1937602)
作者简介: 郭飞(1988-),男,助理研究员。E-mail:guof2014@mail.tsinghua.edu.cn
引用本文:   
郭飞, 程甘霖, 张兆想, 黄兴, 贾晓红. 聚合物软材料磨损硬质材料机理研究进展[J]. 清华大学学报(自然科学版), 2021, 61(6): 643-652.
GUO Fei, CHENG Ganlin, ZHANG Zhaoxiang, HUANG Xing, JIA Xiaohong. Research progress on wear mechanism of hard materials worn by soft polymers. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 643-652.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.011  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I6/643
  
  
  
  
  
  
[1] 黄兴, 郭飞, 叶素娟, 等. 橡塑密封技术发展现状与趋势[J]. 润滑与密封, 2020, 45(6):1-6, 21. HUANG X, GUO F, YE S J, et al. Research status and development trend of rubber and plastic sealing technology[J]. Lubrication Engineering, 2020, 45(6):1-6, 21. (in Chinese)
[2] 吴长贵. 高压航空作动器主密封性能研究[D]. 北京:清华大学, 2016. WU C G. Research on main sealing performance of high pressure aircraft actuator[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[3] ZHANG S W, LIU Q J, HE R Y. Mechanisms of wear of metal by nitrile rubber under boundary lubrication conditions[J]. Lubrication Science, 2001, 13(2):167-180.
[4] ZHANG S W, LIU H C, HE R Y. Mechanisms of wear of steel by natural rubber in water medium[J]. Wear, 2004, 256(3-4):226-232.
[5] ZHANG S W, HE R Y. Advances in the study on wear of metals by polymers[J]. Journal of Materials Science, 2004, 39(18):5625-5632.
[6] VINOGRADOV G V, MUSTAFAEV V A, PODOLSKY Y Y. A study of heavy metal-to-plastic friction duties and of the wear of hardened steel in the presence of polymers[J]. Wear, 1965, 8(5):358-373.
[7] GENT A N, PULFORD C T R. Wear of steel by rubber[J]. Wear, 1978, 49(1):135-139.
[8] GENT A N, PULFORD C T R. Wear of metal by rubber[J]. Journal of Materials Science, 1979, 14(6):1301-1307.
[9] AB-MALEK K, STEVENSON A. On the lubrication and wear of metal by rubber[J]. Journal of Materials Science, 1984, 19(2):585-594.
[10] KING R B, LANCASTER J K. Wear of metals by elastomers in an abrasive environment[J]. Wear, 1980, 61(2):341-352.
[11] 何仁洋. 高分子材料磨损金属的机理及其应用的基础研究[D]. 北京:中国石油大学, 2001. HE R Y. Fundamental research on the mechanism and application of polymer material wear metal[D]. Beijing:China University of Petroleum, 2001. (in Chinese)
[12] MYSHKIN N K, KOVALEV A V. Adhesion and friction of polymers[M]//SINHA S K, BRISCOE B J. Polymer fribology. Singapore:Imperial College Press, 2009:3-37.
[13] LUDEMA K C, AJAYI O O. Friction, wear, lubrication:A textbook in tribology[M]. 2nd ed. Boca Raton, USA:CRC Press, 2018.
[14] 沈明学, 李波, 容康杰, 等. 水润滑条件下磨粒尺寸对橡胶密封副摩擦学行为的影响[J]. 摩擦学学报, 2020, 40(2):252-259. SHEN M X, LI B, RONG K J, et al. Effect of abrasive size on tribological behavior of rubber sealing pair under water-lubricated conditions[J]. Tribology, 2020, 40(2):252-259. (in Chinese)
[15] PARK T J, YOO J, JO H, et al. Contact stress analysis of a spherical wear particle between seal and steel surface[C]//Proceedings of the Korean Society of Precision Engineering Conference. Seoul, Republic of Korean, 2007:395-396.
[16] GILTROW J P. A relationship between abrasive wear and the cohesive energy of materials[J]. Wear, 1970, 15(1):71-78.
[17] GAO J T. Tribochemical effects in formation of polymer transfer film[J]. Wear, 2000, 245(1-2):100-106.
[18] KAR M K, BAHADUR S. The wear equation for unfilled and filled polyoxymethylene[J]. Wear, 1974, 30(3):337-348.
[19] ZALISZ Z, VROEGOP P H, BOSMA R. A running-in model for the reciprocating sliding of Nylon 6.6 against stainless steel[J]. Wear, 1988, 121(1):71-93.
[20] STACHOWIAK G, BATCHELOR A. Engineering tribology[M]. 4th ed. Oxford, UK:Butterworth-Heinemann, 2013.
[21] BUCKLEY D H. Surface effects in adhesion, friction, wear, and lubrication[M]. Amsterdam, Netherland:Elsevier, 1981.
[22] BELY V, SVIRIDENOK A, PETROKOVETS M. Friction and wear in polymer-based materials[M]. Amsterdam, Netherland:Elsevier, 1982.
[23] HORNBOGEN E. The role of fracture toughness in the wear of metals[J]. Wear, 1975, 33(2):251-259.
[24] BRISCOE B J. Friction and wear in polymer-based materials[J]. Tribology International, 1982, 15(5):272.
[25] 王汝霖. 润滑剂摩擦化学[M]. 北京:中国石化出版社, 1994. WANG R L. Lubricant tribology[M]. Beijing:China Petrochemical Press, 1994. (in Chinese)
[26] BHUSHAN B, SHARMA B S, BRADSHAW R L. Friction in magnetic tapes I:Assessment of relevant theory[J]. A S L E Transactions, 1984, 27(1):33-44.
[27] SAKAGAMI T, OGURA K, SHODA M. Thermal sensing and imaging of the dry-sliding contact surface using IR thermomicroscope[C]//Thermosense XVII:An International Conference on Thermal Sensing and Imaging Diagnostic Applications. Bellingham, USA, 1995:263-272.
[28] 王承鹤. 塑料摩擦学:塑料的摩擦、磨损、润滑理论与实践[M]. 北京:机械工业出版社, 1994. WANG C H. Plastic tribology:Theory and practice of plastic friction, wear and lubrication[M]. Beijing:China Machine Press, 1994. (in Chinese)
[29] HARRIS K L, PITENIS A A, SAWYER W G, et al. PTFE tribology and the role of mechanochemistry in the development of protective surface films[J]. Macromolecules, 2018:48(11):3739-3745.
[30] ZAITSEV A L. Investigation of HDPE wear debris formed by friction against metal surfaces with different oxide film content[J]. Wear, 1997, 210(1-2):96-103.
[31] GENT A N, RODGERS W R. Mechanochemical reactions of elastomers with metals[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1985, 23(3):829-841.
[32] THEILER G E. Polymer composites for tribological applications in hydrogen environment[C]//2nd International Conference on Hydrogen Safety. San Sebastián, Spain, 2007:1-9.
[33] BHUSHAN B. Modern tribology handbook[M]. Boca Raton, USA:CRC Press, 2000.
[34] GOROKHOVSKII G A, CHERNENKO P A, SMIRNOV V A. Effect of polymers on the abrasive dispersion of carbon steel[J]. Soviet Materials Science, 1974, 8(5):557-560.
[35] LI X Y, DONG H Q, SHI W. New insights into wear of Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions[J]. Wear, 2001, 250(1-12):553-560.
[36] GINZBURG B M, TOCHIL'NIKOV D G, SHIBAEV L A. Effect of chemical composition of metal counterbodies on wear of carbon plastics with polymer matrix at water lubrication[J]. Journal of Friction and Wear, 2007, 28:286-291.
[37] EVDOKIMOV Y A, SANCHES S S, SUKHORUKOV N A. Effect of the surface activity of polymers during degradation on the friction and wear of plastic-metal and metal-metal pairs[J]. Polymer Mechanics, 1973, 9(3):460-466.
[38] 陈兆彬. 聚酰胺共混物及其复合材料摩擦学性能的研究[D]. 上海:复旦大学, 2005. CHEN Z B. Tribological properties of polyamide blends and their composite[D]. Shanghai:Fudan University, 2005. (in Chinese)
[39] MCKELLOP H, CLARKE I C, MARKOLF K L, et al. Wear characteristics of UHMW polyethylene:A method for accurately measuring extremely low wear rates[J]. Journal of Biomedical Materials Research, 1978, 12(6):895-927.
[40] MCKELLOP H, CLARKE I, MARKOLF K, et al. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device[J]. Journal of Biomedical Materials Research, 1981, 15(5):619-653.
[41] KUMAR P, OKA M, IKEUCHI K, et al. Low wear rate of UHMWPE against zirconia ceramic (Y-PSZ) in comparison to alumina ceramic and SUS 316L alloy[J]. Journal of Biomedical Materials Research, 1991, 25(7):813-828.
[42] POGGIE R A, WERT J J, MISHRA A K, et al. Friction and wear characterization of UHMWPE in reciprocating sliding contact with Co-Cr, Ti-6Al-4V, and zirconia implant bearing surfaces[M]//DENTON R, KESHAVAN M. Wear and friction of elastomers. West Conshohocken, USA:ASTM International, 1992:65-81.
[43] MCKELLOP H. Wear of artificial joint materials II:Twelve-channel wear-screening device:Correlation of experimental and clinical results[J]. Engineering in Medicine, 1981, 10(3):123-136.
[44] 刘广建. 超高分子量聚乙烯[M]. 北京:化学工业出版社, 2001. LIU G J. UHMWPE[M]. Beijing:Chemical Industry Press, 2001. (in Chinese)
[45] DAVIM J P. Wear of advanced materials[M]. London, UK:ISTE, 2013.
[46] YAMAGUCHI Y, KENNEDY F K, BLANCHET T A. Tribology of plastic materials[J]. Journal of Tribology, 1991, 113(2):414.
[47] TANAKA K, MIYATA T. Studies on the friction and transfer of semicrystalline polymers[J]. Wear, 1977, 41(2):383-398.
[48] ZHANG G K, WETZEL B, WANG Q H. Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions[J]. Tribology International, 2015, 88:153-161.
[49] ARNELL R D, SOLIMAN F A. The effects of speed, film thickness and substrate surface roughness on the friction and wear of soft metal films in ultrahigh vacuum[J]. Thin Solid Films, 1978, 53(3):333-341.
[50] EL-DOMIATY A, EL-FADALY M, ES NASSEF A. Wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE)[J]. Journal of Materials Engineering and Performance, 2002, 11(5):577-583.
[51] KANDEMIR G, SMITH S, JOYCE T J. Wear behaviour of CFR PEEK articulated against CoCr under varying contact stresses:Low wear of CFR PEEK negated by wear of the CoCr counterface[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97:117-125.
[52] ZHANG Z X, JIA X H, GUO F, et al. Effect of contact forms on the wear of hard silicon surfaces by soft polymers[J/OL]. Friction, 2020. https://link.springer.com/article/10.1007/s40544-020-0375-2. DOI:10.1007/s40544-020-0375-2.
[53] VINOGRADOV G V, BARTENEV G M, EL'KIN A L, et al. Effect of temperature on friction and adhesion of crystalline polymers[J]. Wear, 1970, 16(3):213-219.
[54] SHOOTER K V, THOMAS P H. Frictional properties of some plastics[J]. Research:A Journal of Science and Its Applications, 1949, 2(11):533-535.
[55] GROSCH K A. Visco-elastic properties and the friction of solids:Relation between the friction and visco-elastic properties of rubber[J]. Nature, 1963, 197(4870):858-859.
[56] QU J, BLAU P J, WATKINS T R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces[J]. Wear, 2005, 258(9):1348-1356.
[57] FRIEDRICH K, KARGER-KOCSIS J, LU Z. Effects of steel counterface roughness and temperature on the friction and wear of PE(E)K composites under dry sliding conditions[J]. Wear, 1991, 148(2):235-247.
[58] HANCHI J, EISS JR N S. Tribological behavior of polyetheretherketone, a thermotropic liquid crystalline polymer and in situ composites based on their blends under dry sliding conditions at elevated temperatures[J]. Wear, 1996, 200(1-2):105-121.
[59] HANCHI J, EISS JR N S. Dry sliding friction and wear of short carbon-fiber-reinforced polyetheretherketone (PEEK) at elevated temperatures[J]. Wear, 1997, 203-204:380-386.
[60] ETTLES C M M. Polymer and elastomer friction in the thermal control regime[J]. A S L E Transactions, 1987, 30(2):149-159.
[61] STIFFLER A K. Friction and wear with a fully melting surface[J]. Journal of Tribology, 1984, 106(3):416-419.
[62] ETTLES C C M. The thermal control of friction at high sliding speeds[J]. Journal of Tribology, 1986, 108(1):98-104.
[63] KURDI A, KAN W H, CHANG L. Tribological behaviour of high performance polymers and polymer composites at elevated temperature[J]. Tribology International, 2019, 130:94-105.
[64] POGA AČG NIK A, KALIN M. Parameters influencing the running-in and long-term tribological behaviour of polyamide (PA) against polyacetal (POM) and steel[J]. Wear, 2012, 290-291:140-148.
[65] TAKADOUM J. Materials and surface engineering in tribology[M]. London, UK:John Wiley & Sons, 2008.
[1] 王春艳, 张景翔, 龙洁, 刘毅. 基于面板数据回归模型的家庭水-能消费时空特征与影响因素[J]. 清华大学学报(自然科学版), 2022, 62(3): 614-626.
[2] 王守清, 牛耘诗, 伍迪, 褚晓凌. PPP项目控制权配置影响因素及合理配置原则[J]. 清华大学学报(自然科学版), 2019, 59(8): 663-669.
[3] 湛社霞, 匡耀求, 阮柱. 基于灰色关联度的粤港澳大湾区空气质量影响因素分析[J]. 清华大学学报(自然科学版), 2018, 58(8): 761-767.
[4] 王茵田, 文志瑛. 向下修正条款对中国可转债定价的影响[J]. 清华大学学报(自然科学版), 2018, 58(1): 108-112.
[5] 李华, 赵原, 刘立业, 肖运实, 李君利. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 525-529.
[6] 邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn