Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 355-366    DOI: 10.16511/j.cnki.qhdxxb.2021.22.018
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于EDLATrust算法的社交网络信息泄露节点概率预测
朱唯一, 张雪芹, 顾春华
华东理工大学 信息科学与工程学院, 上海 200237
Social network information leakage node probability prediction based on the EDLATrust algorithm
ZHU Weiyi, ZHANG Xueqin, GU Chunhua
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
全文: PDF(3273 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在社交网络信息传播过程中,信息转发在用户之间广泛使用,但是存在着隐私信息在信息发布者未授权的情况下遭到泄露的问题。预测发现隐私信息泄露节点,对杜绝该类安全隐患具有重要意义。该文针对隐私信息泄露节点预测问题,提出了一种基于估计器的分布式学习自动机的信任推断(EDLATrust)算法,该算法能够推断社交网络中非直连节点之间的信任值,并减少算法收敛次数。基于信息转发时通常采用的线性传播和群传播2种典型传播模型,设计了满足信任传播模型的3种特征,采用XGBoost算法进行节点链接关系预测。该算法实现了对社交网络信息泄露节点的概率预测,利用该预测概率可以有效辅助推断信息传播过程中的信息泄露节点,从而提高了社交网络信息传播的安全性。在3个社交网络数据集上的实验表明,使用该算法能够有效地预测信息转发链当中信息的泄露节点,保护了用户的隐私安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱唯一
张雪芹
顾春华
关键词 社交网络信息泄露估计器分布式学习自动机XGBoost    
Abstract:Message forwarding is widely used in social network information systems. However, private information can be leaked without authorization from the information publisher. Privacy information leakage nodes need to be identified to eliminate such security risks. An estimator based distributed learning automata for trust inference (EDLATrust) is developed in this study to infer the trust level between non-directly connected nodes by reducing the number of convergence steps. The EDLATrust algorithm is combined with the XGBoost algorithm to identify privacy leakage in social network by using linear and group information transmission propagation models with three information dissemination characteristics. The algorithm predicts potential links in the information transmission chain and assists predicting information leakage points to improve the information dissemination security in social networks. Tests show that the model can effectively predict information leakage points in the information transmission chain for three real social network data sets to protect user privacy.
Key wordssocial networks    information leakage    estimators    distributed learning automata    XGBoost
收稿日期: 2021-01-15      出版日期: 2022-01-22
基金资助:国家自然科学基金资助项目(61975124)
通讯作者: 张雪芹,教授,E-mail:zxq@ecust.edu.cn      E-mail: zxq@ecust.edu.cn
作者简介: 朱唯一(1995-),男,硕士研究生
引用本文:   
朱唯一, 张雪芹, 顾春华. 基于EDLATrust算法的社交网络信息泄露节点概率预测[J]. 清华大学学报(自然科学版), 2022, 62(2): 355-366.
ZHU Weiyi, ZHANG Xueqin, GU Chunhua. Social network information leakage node probability prediction based on the EDLATrust algorithm. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 355-366.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.018  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/355
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] KIM Y A. An enhanced trust propagation approach with expertise and homophily-based trust networks[J]. Knowledge-Based Systems, 2015, 82:20-28.
[2] KIM Y A, SONG H S. Strategies for predicting local trust based on trust propagation in social networks[J]. Knowledge-Based Systems, 2011, 24(8):1360-1371.
[3] SHEKARPOUR S, KATEBI S D. Modeling and evaluation of trust with an extension in semantic web[J]. Journal of Web Semantics, 2010, 8(1):26-36.
[4] FERNÁNDEZ E. Learning automata-based CPU non-intensive calculation of dedicated and shared protected paths in bandwidth-guaranteed networks[J]. Computer Communications, 2017, 103:130-140.
[5] MORADABADI B, MEYBODI M R. Link prediction in weighted social networks using learning automata[J]. Engineering Applications of Artificial Intelligence, 2018, 70:16-24.
[6] GHAVIPOUR M, MEYBODI M R. Trust propagation algorithm based on learning automata for inferring local trust in online social networks[J]. Knowledge-Based Systems, 2018, 143:307-316.
[7] DAUD N N, HAMID S H A, SAADOON M, et al. Applications of link prediction in social networks:A review[J]. Journal of Network and Computer Applications, 2020, 166:102716.
[8] LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7):1019-1031.
[9] LIU Y Y, ZHAO C L, WANG X J, et al. The degree-related clustering coefficient and its application to link prediction[J]. Physica A:Statistical Mechanics and Its Applications, 2016, 454:24-33.
[10] MUNIZ C P, GOLDSCHMIDT R, CHOREN R. Combining contextual, temporal and topological information for unsupervised link prediction in social networks[J]. Knowledge-Based Systems, 2018, 156:129-137.
[11] FU C B, ZHAO M H, FAN L, et al. Link weight prediction using supervised learning methods and its application to yelp layered network[J]. IEEE Transactions on Knowledge & Data Engineering, 2018, 30(8):1507-1518.
[12] CHEN T, GUESTRIN C. XGBoost:A scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference. New York, USA, 2016:785-794.
[13] UREN~A R, KOU G, DONG Y C, et al. A review on trust propagation and opinion dynamics in social networks and group decision making frameworks[J]. Information Sciences, 2019, 478:461-475.
[14] REZVANIAN A, RAHMATI M, MEYBODI M R. Sampling from complex networks using distributed learning automata[J]. Physica A:Statistical Mechanics and Its Applications, 2014, 396:224-234.
[15] GE H, JIANG W, LI S H, et al. A novel estimator based learning automata algorithm[J]. Applied Intelligence, 2015, 42(2):262-275.
[16] BASTAMI E, MAHABADI A, TAGHIZADEH E. A gravitation-based link prediction approach in social networks[J]. Swarm and Evolutionary Computation, 2019, 44:176-186.
[17] KIANINEJAD M, KABIRI P. A strategy for trust propagation along the more trusted paths[C]//20183rd Conference on Swarm Intelligence and Evolutionary Computation. Bam, Iran, 2018:1-6.
[18] JIANG W J, WU J, LI F, et al. Trust evaluation in online social networks using generalized network flow[J]. IEEE Transactions on Computers, 2016, 65(3):952-963.
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[3] 曹子龙, 黄杜若. 基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J]. 清华大学学报(自然科学版), 2022, 62(8): 1330-1340.
[4] 王绍卿, 李翠平, 王征, 陈红. 基于多重信任关系的微博转发行为预测[J]. 清华大学学报(自然科学版), 2019, 59(4): 270-275.
[5] 屠守中, 杨婧, 赵林, 朱小燕. 半监督的微博话题噪声过滤方法[J]. 清华大学学报(自然科学版), 2019, 59(3): 178-185.
[6] 严素蓉, 冯小青, 廖一星. 基于矩阵分解的社会化推荐模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 793-800.
[7] 陈佳哲, 李贺鑫, 王亚楠, 王宇航. 运用t检验评估3DES算法的侧信道信息泄露[J]. 清华大学学报(自然科学版), 2016, 56(5): 499-503.
[8] 朱涵钰, 吴联仁, 吕廷杰. 社交网络用户隐私量化研究: 建模与实证分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 402-406.
[9] 韩心慧, 肖祥全, 张建宇, 刘丙双, 张缘. 基于社交关系的DHT网络Sybil攻击防御[J]. 清华大学学报(自然科学版), 2014, 54(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn