Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 133-140    DOI: 10.16511/j.cnki.qhdxxb.2021.22.020
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
考虑轨迹预测补偿的履带车辆滑动参数估计方法
李睿1,2, 李春明2, 苏杰2, 陈亮3, 秦兆博3, 边有钢4
1. 北京理工大学 机械与车辆学院, 北京 100081;
2. 中国北方车辆研究所, 北京 100072;
3. 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082;
4. 清华大学 汽车安全与节能国家重点实验室, 北京 100084
Slid parameter estimates for tracked vehicles with trajectory prediction compensation
LI Rui1,2, LI Chunming2, SU Jie2, CHEN Liang3, QIN Zhaobo3, BIAN Yougang4
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. China North Vehicle Research Institute, Beijing 100072, China;
3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
4. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(5525 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 由于履带与地面之间的相互作用力复杂,因此为履带车辆建立精确的模型较为困难。该文提出了一种基于轨迹预测补偿的双重无迹Kalman滤波(DUKF)的履带车辆滑动参数实时估计方法。上层无迹Kalman滤波(UKF)利用历史轨迹信息对滑动参数进行初步估计,将初步估计的滑动参数输入基于履带车辆瞬时转向中心(ICR)的车辆模型进行轨迹预测,结合轨迹预测相对位置的残差,通过下层UKF对初步估计的滑动参数进行补偿。基于RecurDyn与MATLAB/Simulink搭建仿真模型对所提出的方法进行了验证。仿真结果表明,与传统的UKF和扩展Kalman滤波(EKF)相比,DUKF能够在转变工况下进一步提升履带车辆滑动参数估计精度并减小轨迹预测误差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李睿
李春明
苏杰
陈亮
秦兆博
边有钢
关键词 履带车辆滑动参数无迹Kalman滤波(UKF)轨迹预测瞬时转向中心(ICR)    
Abstract:Accurate motion models for tracked vehicles are difficult to build due to the complex interactions between the tracks and the terrain. A dual-layer unscented Kalman filter (DUKF) is developed to estimate the slip parameters in real time for tracked vehicles. An upper-layer unscented Kalman filter (UKF) is used first to estimate the slip parameters based on the historical trajectory information, which are then imported into the vehicle model based on the instantaneous centers of rotation (ICRs) to predict the forward trajectory. A lower-layer UKF is then used to correct the preliminarily estimated slip parameters based on the residual position of the trajectory prediction. The effectiveness of the DUKF is verified by simulations on RecurDyn and MATLAB/Simulink. The simulations show that the DUKF improves the accuracy of the slip parameter estimation and reduces the trajectory prediction errors with curvatures compared with predictions using the UKF and the extended Kalman filter (EKF).
Key wordstracked vehicle    slip parameter    unscented Kalman filter (UKF)    trajectory prediction    instantaneous center of rotation (ICR)
收稿日期: 2020-12-30      出版日期: 2022-01-14
基金资助:国家自然科学基金创新研究群体项目(51621004);国家自然科学基金资助项目(52002126);湖南省重点研发计划项目(2019GK2161)
通讯作者: 陈亮,中级工程师,E-mail:neunxcl@hnu.edu.cn     E-mail: neunxcl@hnu.edu.cn
引用本文:   
李睿, 李春明, 苏杰, 陈亮, 秦兆博, 边有钢. 考虑轨迹预测补偿的履带车辆滑动参数估计方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 133-140.
LI Rui, LI Chunming, SU Jie, CHEN Liang, QIN Zhaobo, BIAN Yougang. Slid parameter estimates for tracked vehicles with trajectory prediction compensation. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 133-140.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.020  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/133
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SEBASTIAN B, BEN-TZVI P. Physics based path planning for autonomous tracked vehicle in challenging terrain[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):511-526.
[2] NAUMOV V N, MASHKOV K Y, BYAKOV K E. Autonomous tracked vehicles effectiveness estimation[C]//IOP Conference Series:Materials Science and Engineering. Moscow, Russia, 2019, 534(1):012006.
[3] JIAO J, WANG W Z, HE Y T, et al. Adaptive fuzzy sliding mode-based steering control of agricultural tracked robot[C]//Fuzzy Systems and Data Mining 2019. Kitakyushu, Japan, 2019:243-254.
[4] 秦兆博, 罗禹贡, 解来卿, 等. 基于行星传动的双模混合动力履带车辆传动系统结构设计[J]. 清华大学学报(自然科学版), 2018, 58(1):27-34. QIN Z B, LUO Y G, XIE L Q, et al. Dual-mode hybrid track-type vehicle powertrain design using planetary gear sets[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(1):27-34. (in Chinese)
[5] 秦兆博, 罗禹贡, 张东好, 等. 液压混合动力履带推土机行星齿轮传动系统的设计[J]. 清华大学学报(自然科学版), 2017, 57(5):497-503. QIN Z B, LUO Y G, ZHANG D H, et al. Powertrain design of hydraulic hybrid track-type bull dozers based on planetary gear sets[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(5):497-503. (in Chinese)
[6] FERNANDEZ B, HERRERA P J, CERRADA J A. A simplified optimal path following controller for an agricultural skid-steering robot[J]. IEEE Access, 2019, 7:95932-95940.
[7] GRUNING V, PENTZER J, BRENNAN S, et al. Energy-aware path planning for skid-steer robots operating on hilly terrain[C]//2020 American Control Conference (ACC). Denver, USA, 2020:2094-2099.
[8] ZHAO Z Y, LIU H O, CHEN H Y, et al. Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions[J]. Mechanical Systems and Signal Processing, 2019, 123:333-350.
[9] WANG C F, LV W J, LI X C, et al. Terrain adaptive estimation of instantaneous centres of rotation for tracked robots[J]. Complexity, 2018, 2018:4816712.
[10] WARD C C, IAGNEMMA K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain[J]. IEEE Transactions on Robotics, 2008, 24(4):821-831.
[11] RAY L R, BRANDE D C, LEVER J H. Estimation of net traction for differential-steered wheeled robots[J]. Journal of Terramechanics, 2009, 46(3):75-87.
[12] DAR T M, LONGORIA R G. Slip estimation for small-scale robotic tracked vehicles[C]//Proceedings of the 2010 American Control Conference. Baltimore, USA, 2010:6816-6821.
[13] 周波, 戴先中, 韩建达. 野外移动机器人滑动效应的在线建模和跟踪控制[J]. 机器人, 2011, 33(3):265-272. ZHOU B, DAI X Z, HAN J D. Online modelling and tracking control of mobile robots with slippage in outdoor environments[J]. Robot, 2011, 33(3):265-272. (in Chinese)
[14] SONG X, SENEVIRATNE L D, ALTHOEFER K. Slip parameter estimation for tele-operated ground vehicles in slippery terrain[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2011, 225(6):814-830.
[15] BURKE M. Path-following control of a velocity constrained tracked vehicle incorporating adaptive slip estimation[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA, 2012:97-102.
[16] 焦俊, 孔文, 辜丽川, 等. 基于UKF和SMO农用履带机器人滑动参数计算[J]. 系统仿真学报, 2015, 27(7):1577-1583. JIAO J, KONG W, GU L C, et al. Sliding parameters calculation of agricultural tracked robot based on UKF and SMO[J]. Journal of System Simulation, 2015, 27(7):1577-1583. (in Chinese)
[17] MARTINEZ J L, MANDOW A, MORALES J, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10):867-878.
[18] PENTZER J, BRENNAN S, REICHARD K. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3):455-476.
[19] 熊光明, 鲁浩, 郭孔辉, 等. 基于滑动参数实时估计的履带车辆运行轨迹预测方法研究[J]. 兵工学报, 2017, 38(3):600-607. XIONG G M, LU H, GUO K H, et al. Research on trajectory prediction of tracked vehicles based on real time slip estimation[J]. Acta Armamentarii, 2017, 38(3):600-607. (in Chinese)
[20] 赵梓烨, 刘海鸥, 陈慧岩. 分布式电驱动无人高速履带车辆越野环境轨迹预测方法研究[J]. 兵工学报, 2019, 40(4):680-688. ZHAO Z Y, LIU H O, CHEN H Y. Research on trajectory prediction method of distributed high speed electric drive unmanned tracked vehicle in off-road conditions[J]. Acta Armamentarii, 2019, 40(4):680-688. (in Chinese)
[21] WONG J Y. Theory of ground vehicles[M]. 4th ed. Hoboken, USA:John Wiley & Sons, 2008.
[1] 秦兆博, 罗禹贡, 解来卿, 陈文强, 李克强. 基于行星传动的双模混合动力履带车辆传动系统结构设计[J]. 清华大学学报(自然科学版), 2018, 58(1): 27-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn