Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1066-1078    DOI: 10.16511/j.cnki.qhdxxb.2021.22.022
  电力系统 本期目录 | 过刊浏览 | 高级检索 |
多接收端无线电能传输系统动态特性分析及多目标参数优化
檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣
清华大学 电机工程与应用电子技术系, 电力系统及发电设备安全控制和仿真国家重点实验室, 北京 100084
Dynamic analysis and multi-objective parameter optimization in multi-receiver wireless power transfer systems
TAN Tian, CHEN Kainan, LIN Qiuqiong, JIANG Ye, ZHAO Zhengming
State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(14610 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 无线电能传输(WPT)技术可有效提高供电过程的安全、可靠和灵活性,使用多接收端拓扑的WPT系统在大容量无接触供电场合(如电动汽车、轨道交通无线充电)得到了越来越广泛的应用。针对现有研究对多接收端WPT系统动态性能分析与优化方面的不足,该文建立了多接收端WPT系统动态模型,并基于动态模型推导了系统参数对稳态、动态性能的影响,进而提出一种多接收端WPT系统参数的多目标优化方法。通过仿真和实验验证了所提出的模型、优化方法的准确性和有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
檀添
陈凯楠
林秋琼
蒋烨
赵争鸣
关键词 无接触供电多接收端无线电能传输动态模型动态性能多目标优化    
Abstract:Wireless power transfer (WPT) can improve power supply safety, reliability and flexibility. Multi-receiver WPT systems have many advantages as high power, contactless power supplies for electric vehicle charging, rail transit and other systems. However, dynamic analysis and optimization methods are not well developed for multi-receiver WPT systems. This paper presents a dynamic model for a typical multi-receiver WPT system to analyze the effects of the system parameters on the steady-state and dynamic responses. Then, a multi-objective parameter optimization method is developed for the system based on the dynamic model. Simulations and experiments show that the dynamic model and optimization method are accurate and effective.
Key wordscontactless power supplies    multi-receiver wireless power transfer    dynamic model    dynamic performance    multi-objective optimization
收稿日期: 2021-01-22      出版日期: 2021-08-26
基金资助:国家电网有限公司科技项目资助(SGHB0000KXJS1900586)
通讯作者: 赵争鸣,教授,E-mail:zhaozm@tsinghua.edu.cn     E-mail: zhaozm@tsinghua.edu.cn
引用本文:   
檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣. 多接收端无线电能传输系统动态特性分析及多目标参数优化[J]. 清华大学学报(自然科学版), 2021, 61(10): 1066-1078.
TAN Tian, CHEN Kainan, LIN Qiuqiong, JIANG Ye, ZHAO Zhengming. Dynamic analysis and multi-objective parameter optimization in multi-receiver wireless power transfer systems. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1066-1078.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.022  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1066
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] CHEN X, YU S, ZHANG Z. A receiver-controlled coupler for multiple output wireless power transfer applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(11):4542-4552.
[2] MOON J, HWANG H, JO B, et al. Design and implementation of a high-efficiency 6.78 MHz resonant wireless power transfer system with a 5 W fully integrated power receiver[J]. IET Power Electronics, 2017, 10(5):577-587.
[3] VAN THUAN N, KANG S H, CHOI J H, et al. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications[J]. IEEE Transactions on Consumer Electronics, 2015, 61(2):160-166.
[4] LEE S, JUNG G, SHIN S, et al. The optimal design of high-powered power supply modules for wireless power transferred train[C]//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna, Italy, 2012.
[5] CHENG Y, WANG G, GHOVANLOO M. Analytical modeling and optimization of small solenoid coils for millimeter-sized biomedical implants[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(3):1024-1035.
[6] AGARWAL K, JEGADEESAN R, GUO Y, et al. Wireless power transfer strategies for implantable bioelectronics[J]. IEEE Reviews in Biomedical Engineering, 2017, 10:136-161.
[7] FENG H, TAVAKOLI R, ONAR O C, et al. Advances in high-power wireless charging systems:Overview and design considerations[J]. IEEE Transactions on Transportation Electrification, 2020, 3(6):886-919.
[8] HUTCHINSON L, WATERSON B, ANVARI B, et al. Potential of wireless power transfer for dynamic charging of electric vehicles[J]. IET Intelligent Transport Systems, 2019, 13(1):3-12.
[9] PATIL D, MCDONOUGH M K, MILLER J M, et al. Wireless power transfer for vehicular applications:Overview and challenges[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):3-37.
[10] 麦瑞坤, 李勇, 何正友, 等. 无线电能传输技术及其在轨道交通中研究进展[J]. 西南交通大学学报, 2016, 51(3):446-461. MAI R K, LI Y, HE Z Y, et al. Wireless power transfer technology and its research progress in rail transportation[J]. Journal of Southwest Jiaotong University, 2016, 51(3):446-461. (in Chinese)
[11] 林云志, 赖一雄. 轨道交通无线供电技术的研究进展[J]. 科学技术与工程, 2020, 20(3):892-898. LIN Y Z, LAI Y X. Research progress of wireless power transmission technology for rail transit[J]. Science Technology and Engineering, 2020, 20(3):892-898. (in Chinese)
[12] AHN D, HONG S. Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7):2602-2613.
[13] MI C C, BUJA G, CHOI S Y, et al. Modern advances in wireless power transfer systems for roadway powered electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6533-6545.
[14] LEE S, LEE B, LEE J. A new design methodology for a 300-kW, low flux density, large air gap, online wireless power transfer system[J]. IEEE Transactions on Industry Applications, 2016, 52(5):4234-4242.
[15] KIM J H, LEE B, LEE J, et al. Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6242-6250.
[16] ZHANG Y, ZHAO Z, CHEN K. Frequency-splitting analysis of four-coil resonant wireless power transfer[J]. IEEE Transactions on Industry Applications, 2014, 50(4):2436-2445.
[17] SUN Y, LIAO Z, YE Z, et al. Determining the maximum power transfer points for MC-WPT systems with arbitrary number of coils[J]. IEEE Transactions on Power Electronics, 2018, 33(11):9734-9743.
[18] ZHANG Y, ZHAO Z, CHEN K. Frequency-splitting analysis of four-coil resonant wireless power transfer[J]. IEEE Transactions on Industry Applications, 2014, 50(4):2436-2445.
[19] LEE S B, KIM M, JANG I G. Determination of the optimal resonant condition for multi-receiver wireless power transfer systems considering the transfer efficiency and different rated powers with altered coupling effects[J/OL]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020. DOI:10.1109/JESTPE.2020.2983824.
[20] FENG R, CZARKOWSKI D, DE LEON F, et al. Optimal design of resonant coupled multi-receiver wireless power transfer systems[C]//2017 IEEE International Conference on Industrial Technology (ICIT). Toronto, Canada, 2017.
[21] LIU F, YANG Y, DING Z, et al. A multifrequency superposition methodology to achieve high efficiency and targeted power distribution for a multiload MCR WPT system[J]. IEEE Transactions on Power Electronics, 2018, 33(10):9005-9016.
[22] HUANG Y, LIU C, XIAO Y, et al. Separate power allocation and control method based on multiple power channels for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2020, 35(9):9046-9056.
[23] VORPERIAN V. Simplified analysis of PWM converters using model of PWM switch:Continuous conduction mode[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3):490-496.
[24] ZAHID Z U, DALALA Z M, ZHENG C, et al. Modeling and control of series-series compensated inductive power transfer system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1):111-123.
[25] TAN T, CHEN K, LIN Q, et al. Impedance shaping control strategy for wireless power transfer system based on dynamic small-signal analysis[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(3):1354-1365.
[26] BOSSHARD R, KOLAR J W. Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(4):1370-1382.
[27] WILDRICK C M, LEE F C, CHO B H, et al. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics, 1995, 10(3):280-285.
[1] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[2] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[3] 桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
[4] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[5] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[6] 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn