Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1055-1065    DOI: 10.16511/j.cnki.qhdxxb.2021.22.032
  燃料电池与锂离子电池 本期目录 | 过刊浏览 | 高级检索 |
3类锂离子电池多孔电极模型比较研究及电池正向设计应用
方儒卿, 张娜, 李哲
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Comparison study of three porous electrode models for the forward design of lithium-ion batteries
FANG Ruqing, ZHANG Na, LI Zhe
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(12329 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 锂离子电池的电极由活性物质、黏结剂、导电剂等多种固相材料及灌注其孔隙间的液态电解质组成。通过优化电极的微观多孔结构可提高电池内部锂离子与电子两类主要载流子的有效传输速率,从而有效提升电池能量密度、功率密度。基于多孔电极模型的正向设计方法正逐渐取代传统的试错方法被广泛应用于产业界,但以往的模型难以在计算量与性能预测精度上取得平衡。该文提出了扩展均相多孔电极模型,该模型可以有效地在计算负荷与性能预测精度上实现较好的平衡。比较了3类锂离子电池多孔电极模型——经典准二维均相模型、作者团队开发的非均相模型、该文提出的扩展均相多孔电极模型在计算时间以及电极结构描述精度上的差异,并就不同研发场景下的模型选择给出了具体建议。利用扩展均相多孔电极模型分析了一例电池正向设计的典型问题,即负极活性颗粒粒径选择及其对电池性能的影响,结果发现:提高负极颗粒粒径分布集中度、降低颗粒粒径大小可有效改善电池内部离子在电解液以及活性颗粒内部的有效传输速率,可使得电池在不同倍率条件下的放电容量提升25%(低倍率)至100%(高倍率)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方儒卿
张娜
李哲
关键词 锂离子电池电化学模型多孔电极非均相模型粒径分布    
Abstract:The electrodes of lithium ion batteries are composed of active material particles, binders, conductive additives and pores filled with electrolyte. Optimizing the porous structure of the electrode effectively improves the ionic and electronic transport inside the cell which improves the battery power output. Many previous designs have used the conventional trial-and-error method while the forward design method based on an electrode model is gradually being more widely used in the industry. However, previous electrode models required excessive computations to get the desired prediction accuracy. This paper presents an extended homogeneous porous electrode model for lithium-ion batteries which balances the computational cost and the prediction accuracy. This study compares the computational costs and the electrode modeling accuracy of three electrode models, a traditional volume-averaged pseudo 2D model, a 2D heterogeneous particle-packing model from the previous work of the authors' group, and the extended homogeneous model of this study. Then, this paper discusses how these three electrode models can be used for the forward design of lithium-ion battery electrodes. Finally, the extended homogeneous model is used to analyze the influence of the particle size distribution in the negative electrodes on the cell rate performance with improvements of up to 25% for low C-rates to 100% for high C-rates produced by narrowing the particle size distribution and reducing the particle size.
Key wordslithium-ion battery    electrochemical model    porous electrode    heterogeneous model    particle size distribution
收稿日期: 2021-03-30      出版日期: 2021-08-26
基金资助:国家重点研发计划项目(2017YFB0102201)
通讯作者: 李哲,副教授,E-mail:zhe_li@tsinghua.edu.cn     E-mail: zhe_li@tsinghua.edu.cn
引用本文:   
方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1055-1065.
FANG Ruqing, ZHANG Na, LI Zhe. Comparison study of three porous electrode models for the forward design of lithium-ion batteries. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1055-1065.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.032  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1055
  
  
  
  
  
  
  
  
  
  
  
[1] DOKKO K, NAKATA N, KANAMURA K. High rate discharge capability of single particle electrode of LiCoO2[J]. Journal of Power Sources, 2009, 189(1):783-785.
[2] DOKKO K, NAKATA N, SUZUKI Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode[J]. Journal of Physical Chemistry C, 2010, 114(18):8646-8650.
[3] MUNAKATA H, TAKEMURA B, SAITO T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. Journal of Power Sources, 2012, 217:444-448.
[4] UMIROV N, YAMADA Y, MUNAKATA H, et al. Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique[J]. Journal of Electroanalytical Chemistry, 2019, 855:113514.
[5] GALLAGHER K G, TRASK S E, BAUER C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2016, 163(2):A138-A149.
[6] SRINIVASAN V, NEWMAN J. Design and optimization of a natural graphite/iron phosphate lithium-ion cell[J]. Journal of the Electrochemical Society, 2004, 151(10):A1530-A1538.
[7] GARCIA R E, CHIANG Y M, CARTER W C, et al. Microstructural modeling and design of rechargeable lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(1):A255-A263.
[8] DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6):1526-1533.
[9] FANG R, GE H, WANG Z, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13):130513.
[10] WIEDEMANN A H, GOLDIN G M, BARNETT S A, et al. Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes[J]. Electrochimica Acta, 2013, 88:580-588.
[11] MENDOZA H, ROBERTS S A, BRUNINI V E, et al. Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures[J]. Electrochimica Acta, 2016, 190:1-15.
[12] KIM S, WEE J, PETERS K, et al. Multiphysics coupling in lithium-ion batteries with reconstructed porous microstructures[J]. Journal of Physical Chemistry C, 2018, 122(10):5280-5290.
[13] SMITH M, GARCIA R E, HORN Q C. The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries[J]. Journal of the Electrochemical Society, 2009, 156(11):A896-A904.
[14] CHUNG D-W, SHEARING P R, BRANDON N P, et al. Particle size polydispersity in Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A422-A430.
[15] DADKHAH M, TSOTSAS E. Study of the morphology of solidified binder in spray fluidized bed agglomerates by X-ray tomography[J]. Powder Technology, 2014, 264:256-264.
[16] GARCIA R E, CHIANG Y-M. Spatially resolved modeling of microstructurally complex battery architectures[J]. Journal of the Electrochemical Society, 2007, 154(9):A856-A864.
[17] MISTRY A N, SMITH K, MUKHERJEE P P. Secondary-phase stochastics in lithium-ion battery electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(7):6317-6326.
[18] AWARKE A, WITTLER M, PISCHINGER S, et al. A 3D mesoscale model of the collector-electrode interface in Li-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(6):A798-A808.
[19] GOLDIN G M, COLCLASURE A M, WIEDEMANN A H, et al. Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models[J]. Electrochimica Acta, 2012, 64:118-129.
[20] ENDER M. An extended homogenized porous electrode model for lithium-ion cell electrodes[J]. Journal of Power Sources, 2015, 282:572-580.
[21] MAO Z, FARKHONDEH M, PRITZKER M, et al. Multi-particle model for a commercial blended lithium-ion electrode[J]. Journal of the Electrochemical Society, 2016, 163(3):A458-A469.
[22] RODER F, SONNTAG S, SCHROEDER D, et al. Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries[J]. Energy Technology, 2016, 4(12):1588-1597.
[23] LUETH S, SAUTER U S, BESSLER W G. An agglomerate model of lithium-ion battery cathodes[J]. Journal of the Electrochemical Society, 2016, 163(2):A210-A222.
[1] 吕峥, 宋佳丽, 孙峙, 曹宏斌. 中国锂离子电池回收技术知识产权分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 551-557.
[2] 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65.
[3] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[4] 何志超, 杨耕, 卢兰光, 吴海桑. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 532-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn