Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 60-69    DOI: 10.16511/j.cnki.qhdxxb.2021.22.036
  专题:防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
基于TELEMAC-2D模型分析不同洪涝情景对城市应急响应时间的影响
邵蕊1,2, 邵薇薇1, 苏鑫1, 杨志勇1, 刘家宏1
1. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038;
2. 清华大学 水利水电工程系, 水沙科学与水利水电工程国家重点实验室, 北京 100084
Impact of various flood scenarios on urban emergency responses times based on the TELEMAC-2D model
SHAO Rui1,2, SHAO Weiwei1, SU Xin1, YANG Zhiyong1, LIU Jiahong1
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(25266 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 暴雨洪涝灾害会淹没城市路网进而导致交通与公共服务的中断,增加应急救援时间。该文采用TELEMAC-2D模型模拟了前山河流域五十年一遇与百年一遇设计暴雨情景下的淹没过程,分析了不同的暴雨洪涝情景下前山河流域的医院、消防和公安救援的响应时间。结果表明:在无暴雨洪涝情景下,研究区域内医院、消防和公安的平均可达时间分别为19、24和15.8 min。五十年一遇的暴雨洪涝情景下,城市部分道路被淹没,医院、消防和公安对研究区域的平均响应时间分别增加到133.7、241.8和201 min,远大于无暴雨洪涝情景。百年一遇暴雨洪涝情景下,大部分道路被淹没,医院、消防和公安对研究区域的平均响应时间分别达到220.1、366和304 min,仅站点周边地区可以得到快速响应,其余地区均无法及时响应。暴雨洪涝对城市应急响应能力的影响显著,及时改善城市路网可以避免造成更大的损失。基于TELEMAC-2D模型模拟的城市暴雨洪涝与应急响应能力评估方法,对城市洪灾的应对具有重要意义,可为城市精细化应急管理提供科学支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵蕊
邵薇薇
苏鑫
杨志勇
刘家宏
关键词 暴雨洪涝公共服务应急响应前山河流域洪涝模拟    
Abstract:Pluvial floods can inundate urban road networks which then disrupts traffic flows and public services; thereby, increasing emergency response times. This study used the TELEMAC-2D model to simulate flooding of the Qianshanhe catchment for 50 and 100 year design rainstorms to analyze the response times of hospital ambulances, fire station emergency vehicles and police vehicles in the Qianshanhe catchment for various flooding scenarios. The results show that the average ambulance response time without flooding is 19 min, the average emergency vehicle response time is 24 min and the average police vehicle response time is 15.8 min. The 50 year flood scenario will flood some of the roads which will reduce the average ambulance response time to 133.7 min, the average emergency vehicle response time to 241.8 min and the average police vehicle response time to 201 min, which are much longer than the response times without flooding. The 100 year scenario will flood most roads which will reduce the average ambulance response time to 220.1 min, the average emergency vehicle response time to 366 min and the average police vehicle response time to 304 min. Only areas near the hospitals, fire stations or police stations will get rapid responses, while other areas will get very slow responses. These results show that flooding will significantly affect emergency response times and that roads need to be improved to avoid greater losses. The TELEMAC-2D model is very useful for analyzing the effects of flooding and the emergency response capabilities for urban flooding for urban emergency management.
Key wordspluvial flooding    public services    emergency responses    Qianshanhe catchment    flood simulations
收稿日期: 2021-04-20      出版日期: 2022-01-14
基金资助:国家重点研发计划项目(2018YFC1508203,2018YFC1508201);国家自然科学基金项目(51979285,51739011)
通讯作者: 邵薇薇,正高级工程师,E-mail:shaoww@iwhr.com     E-mail: shaoww@iwhr.com
引用本文:   
邵蕊, 邵薇薇, 苏鑫, 杨志勇, 刘家宏. 基于TELEMAC-2D模型分析不同洪涝情景对城市应急响应时间的影响[J]. 清华大学学报(自然科学版), 2022, 62(1): 60-69.
SHAO Rui, SHAO Weiwei, SU Xin, YANG Zhiyong, LIU Jiahong. Impact of various flood scenarios on urban emergency responses times based on the TELEMAC-2D model. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 60-69.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.036  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/60
  
  
  
  
  
  
  
  
  
  
  
  
[1] 叶高斌. 太湖流域不同洪涝风险区内建设用地扩张特征及其预测[D]. 北京:中国科学院大学, 2015. YE G B. Characteristics and prediction of construction land expansion in different flood risk zones of Taihu Lake Basin[D]. Beijing:University of Chinese Academy of Sciences, 2015. (in Chinese)
[2] 王浩. 城市洪涝模型构建[J]. 中国防汛抗旱, 2018, 28(2):2-3. WANG H. Urban flood model construction[J]. China Flood & Drought Management, 2018, 28(2):2-3. (in Chinese)
[3] 刘家宏, 梅超, 向晨瑶, 等. 城市水文模型原理[J]. 水利水电技术, 2017, 48(5):1-5, 13. LIU J H, MEI C, XIANG C Y, et al. Principles of urban hydrological model[J]. Journal of Hydraulic Engineering, 2017, 48(5):1-5, 13. (in Chinese)
[4] 印定坤, 陈正侠, 李骐安, 等. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1):53-59. YIN D K, CHEN Z X, LI Q A, et al. Influence of rainfall characteristics on runoff control of a sponge reconstructed community in a rainy city[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(1):53-59. (in Chinese)
[5] QIAO Z, TIAN G, XIAO L. Diurnal and seasonal impacts of urbanization on the urban thermal environment:A case study of Beijing using MODIS data[J]. Remote Sensing, 2013, 85(11):93-101.
[6] CUI L, SHI J. Urbanization and its environmental effects in Shanghai, China[J]. Urban Climate, 2012, 2:1-15.
[7] 叶斌, 盛代林, 门小瑜. 城市内涝的成因及其对策[J]. 水利经济, 2010, 28(4):62-65. YE B, SHENG D L, MEN X Y. Causes and countermeasures of urban waterlogging[J]. Journal of Economics of Water Resources, 2010, 28(4):62-65. (in Chinese)
[8] 童陆亿, 胡守庚. 中国主要城市建设用地扩张特征[J]. 资源科学, 2016, 38(1):50-61. TONG L Y, HU S G. Characterizations of urban sprawl in major Chinese cities[J]. Resources Science, 2016, 38(1):50-61. (in Chinese)
[9] 蒋卫威, 鱼京善, 赤穗良辅, 等. 变化环境与人类活动对城市水文与水动力过程影响研究进展[J]. 北京师范大学学报(自然科学版), 2020, 56(2):16-24. JIANG W W, YU J S, AKOH R, et al. Impact of changing environment and human activities on urban hydrological and hydrodynamics process:A review[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(2):16-24. (in Chinese)
[10] 郑鑫. 复杂地表特征下的城市雨洪模拟优化研究[D]. 南京:东南大学, 2019. ZHENG X. Research of urban flood simulation and optimization under complex topographic conditions[D]. Nanjing:Southeast University. 2019. (in Chinese)
[11] 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(4):485-491. ZHANG J Y, WANG Y T, HE R M, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4):485-491. (in Chinese)
[12] 王梦江, 张强. "麦莎"台风期间上海市区道路积水原因和对策[J]. 城市道桥与防洪, 2006(1):74-76. WANG M J, ZHANG Q. Causes and countermeasures of road flooding in Shanghai urban area during Typhoon Misha[J]. Urban Roads and Bridges and Flood Control, 2006(1):74-76. (in Chinese)
[13] 张明泉, 张曼志, 张鑫, 等. 济南"2007·7·18"暴雨洪水分析[J]. 中国水利, 2009(17):40-41. ZHANG M Q, ZHANG M Z, ZHANG X, et al. Analysis of rainstorm flood in Jinan on July 18, 2007[J]. China Water Resources, 2009(17):40-41. (in Chinese)
[14] 尹承美. 济南市短历时强降水特征及致灾大暴雨分析与预报研究[D]. 兰州:兰州大学, 2016. YIN C M. Analysis and forecast of short-duration heavy precipitation and disaster-causing heavy rainstorm in Jinan city[D]. Lanzhou:Lanzhou University, 2016. (in Chinese)
[15] 刘洪伟, 孙杨, 王振宇. 北京市"2016·7·20"特大暴雨防范应对工作启示[J]. 中国防汛抗旱, 2016, 26(6):8-11, 41. LIU H W, SUN Y, WANG Z Y, et al. Inspiration from the prevention and response of the "2016·7·20" heavy rainstorm in Beijing[J]. China Flood & Drought Management, 2016, 26(6):8-11, 41. (in Chinese)
[16] 国务院办公厅. 关于推进海绵城市建设的指导意见[J]. 水务世界, 2015(6):4-6. General Office of the State Council of the People's Republic of China. Guiding opinions on promoting sponge city construction[J]. World Plumbing Council, 2015(6):4-6. (in Chinese)
[17] 杜建东. 海绵城市建设应综合采取"渗, 滞, 蓄, 净, 用, 排"等措施[J]. 建筑砌块与砌块建筑, 2015, 198(6):55. DU J D. The construction of sponge city should take comprehensive measures such as "seepage, stagnation, storage, purification, utilization and drainage"[J]. Building Block & Block Building, 2015, 198(6):55. (in Chinese)
[18] 张利, 汪林. 不利气象条件对公路交通安全的影响及对策[C]//中国智能运输大会. 北京, 2012. ZHANG L, WANG L. Influence of adverse meteorological conditions on highway traffic safety and countermeasures[C]//Intelligent Transportation System Conference China (ITS CC). Beijing, 2012. (in Chinese)
[19] 董珂洋, 陆百川. 恶劣天气对车辆安全行驶的影响[J]. 重庆交通大学学报, 2008, 8(6):24-26. DONG K Y, LU B C. The impact of bad weather on safe driving of vehicles[J]. Journal of Chongqing Jiaotong University, 2008, 8(6):24-26. (in Chinese)
[20] 谭徐明, 马建明, 张念强. 洪涝灾害应急响应调查及其若干问题探讨[J]. 中国水利水电科学研究院学报, 2009, 7(3):216-221. TAN X M, MA J M, ZHANG N Q. Investigation and discussion on flood disaster emergency response[J]. Journal of China Institute of Water Resources and Hydropower Research, 2009, 7(3):216-221. (in Chinese)
[21] CHANG M, TSENG Y, CHEN J. A scenario planning approach for the flood emergency logistics preparation problem under uncertainty[J]. Transportation Research Part E:Logistics and Transportation Review, 2007, 43(6):737-754.
[22] SOHN J. Evaluating the significance of highway network links under the flood damage:An accessibility approach[J]. Transportation Research Part A:Policy and Practice, 2006, 40(6):491-506.
[23] 牛世峰, 姜桂艳. 洪涝灾害条件下疏散交通生成预测方法[J]. 中国安全科学学报, 2015, 25(3):165-170. NIU S F, JIANG G Y. Method for predicting evacuation traffic generation under floods condition[J]. China Safety Science Journal, 2015, 25(3):165-170. (in Chinese)
[24] YU D, YIN J, WILBY R L, et al. Disruption of emergency response to vulnerable populations during floods[J]. Nature Sustainability, 2020, 3(9):728-736.
[25] 刘家宏, 李泽锦, 梅超, 等. 基于TELEMAC-2D的不同设计暴雨下厦门岛城市内涝特征分析[J]. 科学通报, 2019, 64(19):95-106. LIU J H, LI Z J, MEI C, et al. Urban flood analysis for different design storm hyetographs in Xiamen Island based on TELEMAC-2D[J]. Science Bulletin, 2019, 64(19):95-106. (in Chinese)
[26] BECCIU G, PAOLETTI A. Moments of runoff coefficient and peak discharge estimation in urban catchments[J]. Journal of Hydrologic Engineering, 2000, 5(2):197-205.
[27] MERZ R, BLOESCHL G. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria[J]. Water Resources Research, 2009, 45(1):639-643.
[28] 殷杰. 基于高精度地形表面模型的城市雨洪情景模拟与应急响应能力评价[J]. 地理研究, 2017, 36(6):1138-1146. YIN J. Urban pluvial flood scenario modeling and emergency response assessment using high resolution Lidar-DSM[J]. Geographical Research, 2017, 36(6):1138-1146. (in Chinese)
[1] 陈长坤, 孙凤琳. 基于熵权灰色关联度分析的暴雨洪涝灾情评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1067-1073.
[2] 柴跃廷, 于潇, 黄亚东. 电子发票管理与公共服务体系设计与实现[J]. 清华大学学报(自然科学版), 2018, 58(6): 598-602.
[3] 邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
[4] 张英杰, 张原, 郑思齐. 于居民偏好的城市公共服务综合质量指数构建方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 373-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn