Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 277-284    DOI: 10.16511/j.cnki.qhdxxb.2021.22.038
  专题:防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法
王冠宁1,2,3, 陈涛1, 米文忠4, 梁晓良5, 王汝栋1,6
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 甘肃省消防救援总队, 兰州 730000;
3. 灾害环境人员安全安徽省重点实验室, 合肥 230601;
4. 清华大学合肥公共安全研究院, 合肥 230601;
5. 北京市消防救援总队, 北京 100035;
6. 中国人民解放军 96963部队, 北京 100192
Fire locating method based on the convex hull algorithm using partially blocked surveillance cameras
WANG Guanning1,2,3, CHEN Tao1, MI Wenzhong4, LIANG Xiaoliang5, WANG Rudong1,6
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Gansu Fire and Rescue Department, Lanzhou 730000, China;
3. Anhui Province Key Laboratory of Human Safety, Hefei 230601, China;
4. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China;
5. Beijing Fire and Rescue Department, Beijing 100035, China;
6. Unit 96963, PLA, Beijing 100192, China
全文: PDF(4105 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 利用视频分析技术开展火焰定位对火灾事故调查意义重大。为解决实际火灾中监控摄像头部分遮挡场景下起火部位难以确定的问题,该文基于凸壳理论研究了此场景下火焰定位方法。利用油盘火模拟室内火灾现场,布置彩色电荷耦合器件(CCD)摄像头使之被部分遮挡,收集火灾现场监控视频进行分析。首先利用火灾现场监控摄像头收集火焰视频并进行预处理;其次利用凸壳算法计算火焰中心的像素坐标;最后基于单目视觉原理,利用世界坐标系和成像平面坐标系的矩阵变换关系,定量计算出起火部位与监控摄像头的相对位置。实验结果表明:针对监控摄像头部分遮挡场景建立的基于凸壳理论和单目视觉原理的火焰定位方法,可以较好地实现起火部位的快速定位,为火灾事故调查工作的顺利开展提供了有力的工具。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王冠宁
陈涛
米文忠
梁晓良
王汝栋
关键词 凸壳视频分析单目视觉火灾调查火焰定位    
Abstract:Video analyses have become very useful in fire investigations. However, the cause of the fire cannot be easily determined when the surveillance cameras are partially blocked. This study analyzes fire locating methods based on the convex hull algorithm when the surveillance cameras are partially blocked. An oil pan pool fire is used to simulate an indoor fire. The charge-couple device (CCD) camera views are partially blocked with the fire scene videos then collected for analyses. The flame videos are collected and preprocessed before analyzing. Then, a convex hull algorithm is used to calculate the pixel coordinates of the flame center. Finally, the monocular vision principle is used to develop a matrix transformation between the world coordinate system and the imaging plane coordinate system to accurately determine the fire location. Tests show that the monocular visual positioning method based on the convex hull algorithm using partially blocked cameras can accurately locate the fire origin as a powerful tool for fire investigations.
Key wordsconvex hull    video analysis    monocular vision    fire investigation    fire locating
收稿日期: 2021-06-08      出版日期: 2022-01-22
基金资助:国家重点研发计划(2019YFC080026);国家自然科学基金资助项目(71673163,71971126);应急管理部消防救援局科研计划重点攻关项目(2019XFGG20)
通讯作者: 陈涛,研究员,E-mail:chentao.a@tsinghua.edu.cn      E-mail: chentao.a@tsinghua.edu.cn
作者简介: 王冠宁(1994-),男,博士研究生
引用本文:   
王冠宁, 陈涛, 米文忠, 梁晓良, 王汝栋. 基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 277-284.
WANG Guanning, CHEN Tao, MI Wenzhong, LIANG Xiaoliang, WANG Rudong. Fire locating method based on the convex hull algorithm using partially blocked surveillance cameras. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 277-284.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.038  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/277
  
  
  
  
  
  
  
  
  
  
[1] XU Z, MEI L, LIU Y H, et al. Semantic enhanced cloud environment for surveillance data management using video structural description[J]. Computing, 2016, 98(1):35-54.
[2] TANG S Y, SHU X M, HU J, et al. Online-offline associated surveillance system based on E-V fusion[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(6):576-580. (in Chinese)唐诗洋, 疏学明, 胡俊, 等. 基于E-V融合的线上-线下联合监控技术[J]. 清华大学学报(自然科学版), 2018, 58(6):576-580.
[3] LI D X, FEI G Y, TENG S W. Learning large margin multiple granularity features with an improved Siamese network for person re-identification[J]. Symmetry, 2020, 12(1):92.
[4] HUANG T G, SHARMA A. Technical and economic feasibility assessment of a cloud-enabled traffic video analysis framework[J]. Journal of Big Data Analytics in Transportation, 2020, 2(3):223-233.
[5] XING L, HE J, ABDEL-ATY M, et al. Time-varying analysis of traffic conflicts at the upstream approach of toll plaza[J]. Accident Analysis & Prevention, 2020, 141:105539.
[6] COSTA L R, RAUEN M S, FRONZA A B. Car speed estimation based on image scale factor[J]. Forensic Science International, 2020, 310:110229.
[7] CHEN C, BAI S, HUANG L D, et al. Research on monitoring and early-warning of passenger flow in crowded places based on video analysis[J]. Journal of Safety Science and Technology, 2020, 16(4):143-148. (in Chinese)陈冲, 白硕, 黄丽达, 等. 基于视频分析的人群密集场所客流监控预警研究[J]. 中国安全生产科学技术, 2020, 16(4):143-148.
[8] TAO Y N, SU F, YUAN P J, et al. Intelligent criminal investigation system based on both footprint recognition and surveillance video analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9):1730-1738. (in Chinese)陶一宁, 苏峰, 袁培江, 等. 联合足迹识别与监控视频分析的智能刑侦系统[J]. 北京航空航天大学学报, 2020, 46(9):1730-1738.
[9] National Fire Protection Association. Guide for fire and explosion investigations, 2017 edition:NFPA 921-2017[S]. Quincy, USA:National Fire Protection Association, 2017.
[10] LI Z H, SUN Y Y, XU L, et al. Explosion scene forensic image interpretation[J]. Journal of Forensic Sciences, 2019, 64(4):1221-1229.
[11] WANG G N, CHEN T, MI W Z, et al. Fire investigation method using completely blocked surveillance cameras[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2):128-134. (in Chinese)王冠宁, 陈涛, 米文忠, 等. 监控完全遮挡场景下火灾调查方法[J]. 清华大学学报(自然科学版), 2021, 61(2):128-134.
[12] YU H Y, LI G R, ZHANG W G, et al. The unmanned aerial vehicle benchmark:Object detection, tracking and baseline[J]. International Journal of Computer Vision, 2020, 128(5):1141-1159.
[13] KAKANI V, NGUYEN V H, KUMAR B P, et al. A critical review on computer vision and artificial intelligence in food industry[J]. Journal of Agriculture and Food Research, 2020, 2:100033.
[14] TIAN H K, WANG T H, LIU Y D, et al. Computer vision technology in agricultural automation:A review[J]. Information Processing in Agriculture, 2020, 7(1):1-19.
[15] XU Y, DING C, SHU X K, et al. Shared control of a robotic arm using non-invasive brain-computer interface and computer vision guidance[J]. Robotics and Autonomous Systems, 2019, 115:121-129.
[16] WANG L. Study on fire location technology for fire truck based on image[D]. Xuzhou:China University of Mining and Technology, 2019. (in Chinese)王丽. 基于图像的消防车用火灾定位技术研究[D]. 徐州:中国矿业大学, 2019.
[17] LI L J, YANG H J. Revised detection and localization algorithm for Camellia oleifera fruits based on convex hull theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12):285-292, 346. (in Chinese)李立君, 阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12):285-292, 346.
[18] CUPEC R, VIDOVIĆG I, FILKO D, et al. Object recognition based on convex hull alignment[J]. Pattern Recognition, 2020, 102:107199.
[19] AN P T, HUYEN P T T, LE N T. A modified Graham's convex hull algorithm for finding the connected orthogonal convex hull of a finite planar point set[J]. Applied Mathematics and Computation, 2021, 397:125889.
[20] CHEN K Y, ZOU X J, GUAN Z H, et al. Camera calibration method of picking robot based on shuffled frog leaping optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):23-34. (in Chinese)陈科尹, 邹湘军, 关卓怀, 等. 基于混合蛙跳优化的采摘机器人相机标定方法[J]. 农业机械学报, 2019, 50(1):23-34.
[21] SONG H B, HE D J, PAN J P. Recognition and localization methods of occluded apples based on convex hull theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(22):174-180. (in Chinese)宋怀波, 何东健, 潘景朋. 基于凸壳理论的遮挡苹果目标识别与定位方法[J]. 农业工程学报, 2012, 28(22):174-180.
[1] 迟昊, 刘宇, 陈恳, 冯渭春, 张继文. 惯量对称非合作目标参数的单目估计方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1492-1499.
[2] 王冠宁, 陈涛, 米文忠, 康彦武, 邓亮. 监控完全遮挡场景下火灾调查方法[J]. 清华大学学报(自然科学版), 2021, 61(2): 128-134.
[3] 唐诗洋, 疏学明, 胡俊, 吴津津, 申世飞. 基于E-V融合的线上-线下联合监控技术[J]. 清华大学学报(自然科学版), 2018, 58(6): 576-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn