Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 208-214    DOI: 10.16511/j.cnki.qhdxxb.2021.22.045
  专题:建设管理 本期目录 | 过刊浏览 | 高级检索 |
大型工程安全隐患管理协作特征挖掘
张东成1, 强茂山1, 江汉臣2, 黄钰洁1
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 项目管理与建设技术研究所, 北京 100084;
2. 清华大学 公共管理学院, 北京 100084
Mining safety hazard management collaboration features from large construction projects
ZHANG Dongcheng1, QIANG Maoshan1, JIANG Hanchen2, HUANG Yujie1
1. Institute of Project Management and Construction Technology, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. School of Public Policy and Management, Tsinghua University, Beijing 100084, China
全文: PDF(7860 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 大型工程建设的安全隐患管理对保障施工安全具有重要意义。该文基于某大型工程信息系统3年多记录的安全隐患管理协作数据,采用文本挖掘技术,包括自动分词、词性标注和词频-逆向文件频率(TF-IDF)算法等,提出一套隐患特征提取和分类方法,可用于隐患特征的动态分析,以实时掌握工程现场的安全隐患管理状态。基于该特征挖掘方法,分别进行了隐患特征与隐患类型、单位角色的交互分析,并进一步探索隐患特征对整改效率的影响。该研究为工程现场的安全隐患管理提供了方法的支撑,有助于抓住隐患管理重点,提升管理效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张东成
强茂山
江汉臣
黄钰洁
关键词 大型工程建设安全隐患管理协作特征挖掘    
Abstract:Safety hazard management of large construction projects is essential to ensuring construction safety. This study used text mining of safety hazard management information for more than three years collected from a large construction project's information system with automatic word segmentation, part-of-speech tagging and term frequency (TF)-inverse document frequency (IDF) analyses to extract and classify hazard features. This methodology analyzes the safety hazard features to identify the safety hazard conditions on site in real time. The hazard features are further analyzed by different hazard types and different roles of the organizations. This study also investigates the impact of the hazard features on the management efficiency. This paper provides an effective on site safety hazard management method which can help managers focus on the key needs and improve construction efficiency.
Key wordslarge construction projects    safety hazards    management collaboration    feature mining
收稿日期: 2021-07-22      出版日期: 2022-01-22
基金资助:国家自然科学基金资助项目(51779124)
通讯作者: 强茂山,教授,E-mail:qiangms@tsinghua.edu.cn      E-mail: qiangms@tsinghua.edu.cn
作者简介: 张东成(1995-),男,博士研究生
引用本文:   
张东成, 强茂山, 江汉臣, 黄钰洁. 大型工程安全隐患管理协作特征挖掘[J]. 清华大学学报(自然科学版), 2022, 62(2): 208-214.
ZHANG Dongcheng, QIANG Maoshan, JIANG Hanchen, HUANG Yujie. Mining safety hazard management collaboration features from large construction projects. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 208-214.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.045  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/208
  
  
  
  
  
  
  
  
  
  
  
[1] ZHOU Z P, GOH Y M, LI Q M. Overview and analysis of safety management studies in the construction industry[J]. Safety Science, 2015, 72:337-350.
[2] LEUNG M Y, CHAN Y S, YUEN K W. Impacts of stressors and stress on the injury incidents of construction workers in Hong Kong[J]. Journal of Construction Engineering and Management, 2010, 136(10):1093-1103.
[3] ZHOU Q, FANG D P, MOHAMED S. Safety climate improvement:Case study in a Chinese construction company[J]. Journal of Construction Engineering and Management, 2011, 137(1):86-95.
[4] JIANG Z M, FANG D P, ZHANG M Z. Experiment-based simulations of construction worker safety behavior[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(10):1327-1332. (in Chinese)蒋中铭, 方东平, 张铭宗. 基于实验设计的建筑工人安全相关行为仿真[J]. 清华大学学报(自然科学版), 2014, 54(10):1327-1332.
[5] XU S S, WANG X Q, XU Z C. Governance of core safety risks of urban underground engineering:The formation and evolution of multi-party collaborative strategies[J]. China Civil Engineering Journal, 2017, 50(9):90-103. (in Chinese)许树生, 王雪青, 徐志超. 城市地下工程核心安全风险治理:多方协同策略的形成与演化[J]. 土木工程学报, 2017, 50(9):90-103.
[6] TEIZER J, ALLREAD B S, FULLERTON C E, et al. Autonomous pro-active real-time construction worker and equipment operator proximity safety alert system[J]. Automation in Construction, 2010, 19(5):630-640.
[7] LEE H S, LEE K P, PARK M, et al. RFID-based real-time locating system for construction safety management[J]. Journal of Computing in Civil Engineering, 2012, 26(3):366-377.
[8] CARBONARI A, GIRETTI A, NATICCHIA B. A proactive system for real-time safety management in construction sites[J]. Automation in Construction, 2011, 20(6):686-698.
[9] ZHANG M Y, CAO T Z, ZHAO X F. Applying sensor-based technology to improve construction safety management[J]. Sensors, 2017, 17(8):1841.
[10] WU W W, YANG H J, CHEW D A S, et al. Towards an autonomous real-time tracking system of near-miss accidents on construction sites[J]. Automation in Construction, 2010, 19(2):134-141.
[11] PARK C S, KIM H J. A framework for construction safety management and visualization system[J]. Automation in Construction, 2013, 33:95-103.
[12] ZHANG S J, SULANKIVI K, KIVINIEMI M, et al. BIM-based fall hazard identification and prevention in construction safety planning[J]. Safety Science, 2015, 72:31-45.
[13] LEI Z, TANG W Z, DUFFIELD C F, et al. Qualitative analysis of the occupational health and safety performance of Chinese international construction projects[J]. Sustainability, 2018, 10(12):4344.
[14] GUO S Y, LUO H B, YONG L. A big data-based workers behavior observation in China metro construction[J]. Procedia Engineering, 2015, 123:190-197.
[15] LIN P, WEI P C, FAN Q X, et al. CNN model for mining safety hazard data from a construction site[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8):628-634. (in Chinese)林鹏, 魏鹏程, 樊启祥, 等. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8):628-634.
[16] LI X D, FEI Y F, RIZZUTO T E, et al. What are the occupational hazards of construction project managers:A data mining analysis in China[J]. Safety Science, 2021, 134:105088.
[17] AMIRI M, ARDESHIR A, FAZEL ZARANDI M H, et al. Pattern extraction for high-risk accidents in the construction industry:A data-mining approach[J]. International Journal of Injury Control and Safety Promotion, 2016, 23(3):264-276.
[18] SUN J. Jieba Chinese word segmentation tool[Z]. 2012.
[19] GUAN Q, DENG S H, WANG H. Chinese stopwords for text clustering:A comparative study[J]. Data Analysis and Knowledge Discovery, 2017, 1(3):72-80. (in Chinese)官琴, 邓三鸿, 王昊. 中文文本聚类常用停用词表对比研究[J]. 数据分析与知识发现, 2017, 1(3):72-80.
[20] ABDELHAMID T S, EVERETT J G. Identifying root causes of construction accidents[J]. Journal of Construction Engineering and Management, 2000, 126(1):52-60.
[21] PERLMAN A, SACKS R, BARAK R. Hazard recognition and risk perception in construction[J]. Safety Science, 2014, 64:22-31.
[22] BAI Y, JIA R X. Elite recruitment and political stability:The impact of the abolition of China's civil service exam[J]. Econometrica, 2016, 84(2):677-733.
[23] LI H, LU M J, HSU S C, et al. Proactive behavior-based safety management for construction safety improvement[J]. Safety Science, 2015, 75:107-117.
[1] 林鹏, 魏鹏程, 樊启祥, 陈闻起. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8): 628-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn