Three-dimensional laser profilometer survey system of pavement slip characteristics
XU Li1, GUO Runhua2, PENG Huiting1, SHI Pengcheng2
1. College of Construction Engineering, Xinjiang University, Urumqi 830047, China; 2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Abstract:A 3D laser profilometer was used to measure the average height (Ra), average section depth (MPD), average structure depth (MTD), root mean square height (Rq), peak volume (Vmp), wavelength (λ), and two-dimensional power spectral density (PSD) of eight asphalt pavements. The results show that the anti-slip characteristics correlate with Ra, MPD, and MTD with over 80% correlation. PSD decreases with increasing wave vector q, which can also be used to independently evaluate the anti-skid characteristics of the pavement. The micro- and macro-texture wavelengths of the AC13 and AC16 series samples mainly range from 0-3 mm, with the texture band below 1 mm correlating positively with the anti-slip characteristics with up to 80% correlation, with less correlation in the 1-1.25 mm band, and even less in the 1.25-2.5 mm band. Rutting reduces the roughness as seen in the lower PSD than for the original pavement.
[1] LOPRENCIPE G, CANTISANI G, DI MASCIO P. Global assessment method of road distresses[C]//Proceedings of 4th International Symposium on Life-Cycle Civil Engineering. Tokyo, Japan:CRC Press, 2015:1113-1120. [2] WOODHEAD S, PADGHAM D E. The effect of plant surface characteristics on resistance of rice to the brown planthopper, Nilaparvata lugens[J]. Entomologia Experimentalis et Applicata, 1988, 47(1):15-22. [3] HANNA A N. NCHRP research results digest 321:Guide for pavement friction:Background and research[R]. Washington DC, USA:Transportation Research Board, 2009. [4] PERSSON B N J, SPENCER N D. Sliding friction:Physical principles and applications[J]. Physics Today, 1999, 52(1):66-68. [5] PERSSON B N J. Theory of rubber friction and contact mechanics[J]. The Journal of Chemical Physics, 2001, 115(8):3840-3861. [6] PERSSON B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4):201-227. [7] 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4):32-49. HUANG X M, ZHENG B S. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4):32-49. (in Chinese) [8] LUO W T, LI L. Development of a new analytical water film depth (WFD) prediction model for asphalt pavement drainage evaluation[J]. Construction and Building Materials, 2019, 218:530-542. [9] ASTM. Standard test method for measuring pavement macrotexture depth using a volumetric technique:ASTM E965-96[S]. West Conshohocken, USA:ASTM International, 2007. [10] ASTM. Standard practice for calculating pavement macrotexture mean profile depth:ASTM E1845-15[S]. West Conshohocken, USA:ASTM International, 2015. [11] PRATICò F G, VAIANA R. A study on the relationship between mean texture depth and mean profile depth of asphalt pavements[J]. Construction and Building Materials, 2015, 101:72-79. [12] 刘琬辰, 黄晓明. 基于图像处理的沥青路面构造深度评价方法的优化研究[J]. 北方交通, 2013(3):9-13. LIU W C, HUANG X M. Optimization research of the asphalt pavement surface texture evaluation based on digital image[J]. Northern Communications, 2013(3):9-13. (in Chinese) [13] 宋永朝, 闫功喜, 隋永芹, 等. 基于数字图像处理技术的沥青路面表面纹理构造分布[J]. 中南大学学报(自然科学版), 2014, 45(11):4075-4080. SONG Y C, YAN G X, SUI Y Q, et al. Texture structure distribution of asphalt pavement surface based on digital image processing technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11):4075-4080. (in Chinese) [14] PUZZO L, LOPRENCIPE G, TOZZO C, et al. Three-dimensional survey method of pavement texture using photographic equipment[J]. Measurement, 2017, 111:146-157. [15] KOGBARA R B, MASAD E A, WOODWARD D, et al. Relating surface texture parameters from close range photogrammetry to Grip-Tester pavement friction measurements[J]. Construction and Building Materials, 2018, 166:227-240. [16] ASTM. Standard test method for measuring pavement macrotexture properties using the circular track meter:ASTM E2157-01[S]. West Conshohocken, USA:ASTM International, 2001. [17] GAO L, LIU M X, WANG Z Q, et al. Correction of texture depth of porous asphalt pavement based on CT scanning technique[J]. Construction and Building Materials, 2019, 200:514-520. [18] 赵康, 丁磊, 王金洋. 双激光位移传感器测量路面平整度系统实现[J]. 汽车实用技术, 2012(5):61-64. ZHAO K, DING L, WANG J Y. Double laser displacement sensor measurement of pavement system[J]. Automobile Applied Technology, 2012(5):61-64. (in Chinese) [19] CIGADA A, MANCOSU F, MANZONI S, et al. Laser-triangulation device for in-line measurement of road texture at medium and high speed[J]. Mechanical Systems and Signal Processing, 2010, 24(7):2225-2234. [20] CHOU C P, CHU H J, CHEN A C. Advanced runway groove identification[J]. Measurement, 2019, 152:107272. [21] TSAI Y, WU Y, LEWIS Z. Full-lane coverage micromilling pavement-surface quality control using emerging 3D line laser imaging technology[J]. Journal of Transportation Engineering, 2014, 140(2):04013006. [22] LI L, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1):49-62. [23] GUO R, YU Z, ZHOU Y. Development and preliminary evaluation of a varying-speed road profiler[J]. Journal of Testing and Evaluation, 2020, 48(5):3479-3489. [24] HE L Y, WU S S, WU C Y. Robust laser stripe extraction for three-dimensional reconstruction based on a cross-structured light sensor[J]. Applied Optics, 2017, 56(4):823-832. [25] ZHANG Q L, PLESS R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan:IEEE, 2005. [26] VASCONCELOS F, BARRETO J P, NUNES U. A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2097-2107. [27] 黄凌锋, 刘光东, 张超, 等. 基于灰度权重模型的激光条纹中心提取算法[J]. 激光技术, 2020, 44(2):190-195. HUANG L F, LIU G D, ZHANG C, et al. Laser stripe center extraction algorithm based on gray weight model[J]. Laser Technology, 2020, 44(2):190-195. (in Chinese) [28] 甘宏, 张超, 李林, 等. 复杂背景下激光条纹中心亚像素提取方法[J]. 光电工程, 2019, 46(2):82-89. GAN H, ZHANG C, LI L, et al. Sub-pixel extraction of laser stripe in complex background[J]. Opto-Electronic Engineering, 2019, 46(2):82-89. (in Chinese) [29] MARINELLO F, PEZZUOLO A. Application of ISO 25178 standard for multiscale 3D parametric assessment of surface topographies[J]. IOP Conference Series Earth and Environmental Science, 2019, 275:12011. [30] KANAFI M M, TUONONEN A J. Top topography surface roughness power spectrum for pavement friction evaluation[J]. Tribology International, 2017, 107:240-249.