Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1438-1451    DOI: 10.16511/j.cnki.qhdxxb.2021.25.004
  新型冠状病毒 本期目录 | 过刊浏览 | 高级检索 |
新型冠状病毒等病原体空气消毒技术综述
郭云涛1, 张东荷雨1, 张丽阳1, 彭思琦1, 罗海云1, 帖金凤2, 王新新1
1. 清华大学 电机工程与应用电子技术系, 北京 100084;
2. 中国人民解放军疾病预防控制中心 消毒与感染控制科, 北京 100071
Air disinfection for SARS-CoV-2 and other pathogens: A review
GUO Yuntao1, ZHANG Dongheyu1, ZHANG Liyang1, PENG Siqi1, LUO Haiyun1, TIE Jinfeng2, WANG Xinxin1
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. Department of Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
全文: PDF(3727 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 重症急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)、中东呼吸综合征冠状病毒(Middle East respiratory syndrome coronavirus,MERS-CoV)和新型冠状病毒(SARS-CoV-2)等病原体引发的相关疾病已经多次给全球人类造成灾难。气溶胶是这些病原体传播的重要途径,快速高效的空气消毒对切断病原体传播至关重要。低温等离子体消毒技术是一种新型消毒技术,已被证明可灭活多种细菌、真菌、病毒、孢子等微生物,由于其高效消杀能力及环境友好性,受到越来越多的关注。根据消毒技术中的关键因素,可将其分为物理消毒技术、化学消毒技术和综合消毒技术,该文总结了各种消毒技术的消毒机理、适用场景、研究现状和特点,以及各种技术应用于新型冠状病毒等病原体消毒的最新研究进展,重点分析了等离子体消毒技术用于中央空调空气消毒的关键技术和应用前景,最后以清华大学工字厅为例,证明了本研究团队研发的面放电等离子体消毒技术的实用性,为进一步拓展应用奠定了基础。该技术的实际应用对于当前疫情防控及今后构建国家生物安全体系有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭云涛
张东荷雨
张丽阳
彭思琦
罗海云
帖金凤
王新新
关键词 等离子体消毒技术空气消毒新型冠状病毒    
Abstract:SARS, MERS, SARS-CoV-2 and other pathogens have caused many pandemics in the world. These pathogens are often spread as aerosols in the air. Thus, fast, efficient air disinfection is essential for effectively limiting the spread of the pathogens. A low temperature plasma disinfection method that deactivates many kinds of bacteria, fungi, viruses, spores and other microorganisms has attracted much attention due to its efficiency and environmental friendliness. Disinfection methods can be divided into physical disinfection, chemical disinfection and comprehensive disinfection based on their key factors. This paper reviews the disinfection mechanisms, application scenarios, development progress and other characteristics of various disinfection methods. The review then focuses on the application of these technologies to the disinfection of pathogens such as SARS-CoV-2 with emphasis on plasma disinfection including the key methods and prospects of plasma disinfection in central air conditioning systems. Finally, the Gong Zi Ting performance center of Tsinghua University is used as an example to show the practicality of this surface discharge plasma disinfection method as an example for further applications. This method can significantly improve epidemic prevention and control, as well as the construction of national biosafety systems.
Key wordsplasma    disinfection technology    air disinfection    SARS-CoV-2
收稿日期: 2020-11-21      出版日期: 2021-12-11
基金资助:国家自然科学基金(52041701);清华大学-北京协和医院自主科研联合项目(20191080604);清华大学春风基金(2020Z99CFG007);北京市科委基金(Z201100007520002)
通讯作者: 罗海云,副教授,E-mail:lhy@tsinghua.edu.cn;帖金凤,副研究员,E-mail:535398750@qq.com     E-mail: lhy@tsinghua.edu.cn;535398750@qq.com
引用本文:   
郭云涛, 张东荷雨, 张丽阳, 彭思琦, 罗海云, 帖金凤, 王新新. 新型冠状病毒等病原体空气消毒技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1438-1451.
GUO Yuntao, ZHANG Dongheyu, ZHANG Liyang, PENG Siqi, LUO Haiyun, TIE Jinfeng, WANG Xinxin. Air disinfection for SARS-CoV-2 and other pathogens: A review. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1438-1451.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.004  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1438
  
  
  
  
  
  
  
  
  
  
[1] World Health Organization. WHO coronavirus disease (COVID-19) dashboard. (2020-11-12). https://covid19.who.int/.
[2] JINIA A J, BA SUNBUL N, MEERT C A, et al. Review of sterilization techniques for medical and personal protective equipment contaminated with SARS-CoV-2[J]. IEEE Access, 2020, 8:111347-111354.
[3] HASSAN S A, SHEIKH F N, JAMAL S, et al. Coronavirus (COVID-19):A review of clinical features, diagnosis, and treatment[J]. Cureus, 2020, 12(3):e7355.
[4] CHU W H, FANG C, DENG Y, et al. Intensified disinfection amid COVID-19 pandemic poses potential risks to water quality and safety[J]. Environmental Science & Technology, 2020, doi:10.1021/acs.est.0c04394.
[5] LIU Y, NING Z, CHEN Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals[J]. Nature, 2020, 582(7813):557-560.
[6] VAN DOREMALEN N V, BUSHMAKER T, MORRIS D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. New England Journal of Medicine, 2020, 382(16):1564-1567.
[7] CHIN A W H, CHU J T S, PERERA M R A, et al. Stability of SARS-CoV-2 in different environmental conditions[J]. The Lancet Microbe, 2020, 1(1):e10.
[8] 中华人民共和国卫生部. WS/T 367-2012医疗机构消毒技术规范[S]. 北京:中国标准出版社, 2012. Ministry of Health of PRC. WS/T 367-2012 regulation of disinfection technique in healthcare settings[S]. Beijing:Standards Press of China, 2012. (in Chinese)
[9] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 14295-2019空气过滤器[S]. 北京:中国标准化出版社, 2019. State Administration for Market Regulation, Standardization Administration of China. GB/T 14295-2019 air filter[S]. Beijing:Standards Press of China, 2019. (in Chinese)
[10] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 13554-2020高效空气过滤器[S]. 北京:中国标准出版社, 2020. State Administration for Market Regulation, Standardization Administration of China. GB/T 13554-2020 high efficiency particulate air filter[S]. Beijing:Standards Press of China, 2020. (in Chinese)
[11] XU Y, RAJA S, FERRO A R, et al. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health[J]. Building and Environment, 2010, 45(2):330-337.
[12] 徐火炬. 静电与电离强化驻极体集尘空气净化技术在民用领域的应用[J]. 洁净与空调技术, 2015(1):61-66. XU H J. The application of electrostatic and ionized electret for air borne particle collection[J]. Contamination Control & Air-Conditioning Technology, 2015(1):61-66. (in Chinese)
[13] 黄翔, 顾群, 吴生. 聚合物驻极体空气过滤材料(器)在空调中的应用[J]. 洁净与空调技术, 2003(4):38-42. HUANG X, GU Q, WU S. Application of polymer electret air filtration material (filter) in air conditioning[J]. Contamination Control & Air-Conditioning Technology, 2003(4):38-42. (in Chinese)
[14] 黄银君, 戈银生, 张文智, 等. 空气消毒技术[J]. 中国兽医科技, 1995, 25(7):44-45. HUANG Y J, GE Y S, ZHANG W Z, et al. Air disinfection technique[J]. Chinese Veterinary Science, 1995, 25(7):44-45. (in Chinese)
[15] KELLY-WINTENBERG K, SHERMAN D M, TSAI P P Y, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter)[J]. IEEE Transactions on Plasma Science, 2000, 28(1):64-71.
[16] 张豫疆, 陈世豪. 医院室内空气净化技术应用现状[J]. 中西医结合护理(中英文), 2020, 6(2):211-213. ZHANG Y J, CHEN S H. Application of indoor air purification technology in the hospital setting[J]. Nursing of Integrated Traditional Chinese and Western Medicine, 2020, 6(2):211-213. (in Chinese)
[17] 钟秀玲, 刘君卓, 李小瑛. 空气消毒净化方法研究[J]. 中华护理杂志, 1999, 34(9):526-528. ZHONG X L, LIU J Z, LI X Y. Research on air disinfection and purification[J]. Chinese Journal of Nursing, 1999, 34(9):526-528. (in Chinese)
[18] 杨绘敏, 王涛. 空气消毒净化新技术在医院工程中的应用[J]. 洁净与空调技术, 2018(3):89-92.YANG H M, WANG T. Application of new technology of air disinfection and purification in hospital engineering[J]. Contamination Control & Air-Conditioning Technology, 2018(3):89-92. (in Chinese)
[19] MOISAN M, BARBEAU J, MOREAU S, et al. Low-temperature sterilization using gas plasmas:A review of the experiments and an analysis of the inactivation mechanisms[J]. International Journal of Pharmaceutics, 2001, 226(1-2):1-21.
[20] GOPAL N G S. Radiation sterilization of pharmaceuticals and polymers[J]. Radiation Physics and Chemistry, 1978, 12(1-2):35-50.
[21] LAROUSSI M. Low temperature plasma-based sterilization:Overview and state-of-the-art[J]. Plasma Processes and Polymers, 2005, 2(5):391-400.
[22] DUAN S M, ZHAO X S, WEN R F, et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation[J]. Biomedical & Environmental Sciences, 2003, 16(3):246-255.
[23] DARNELL M E R, SUBBARAO K, FEINSTONE S M, et al. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV[J]. Journal of Virological Methods, 2004, 121(1):85-91.
[24] RABENAU H F, CINATL J, MORGENSTERN B, et al. Stability and inactivation of SARS coronavirus[J]. Medical Microbiology and Immunology, 2005, 194(1-2):1-6.
[25] DE MAN P, VAN STRATEN B, VAN DEN DOBBELSTEEN J, et al. Sterilization of disposable face masks by means of standardized dry and steam sterilization processes; an alternative in the fight against mask shortages due to COVID-19[J]. Journal of Hospital Infection, 2020, 105(2):356-357.
[26] CARRILLO I O, FLOYD A C E, VALVERDE C M, et al. Immediate use steam sterilization (IUSS) sterilizes n95 masks without mask damage[J]. Infection Control and Hospital Epidemiology, 2020, 41(9):1-5.
[27] 兰贵天, 张勇, 窦超, 等. 热耦合电晕放电空气消毒装置的设计及特性分析[J]. 高电压技术, 2020. (2020-10-13). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=GDYJ2020101200O&v=MjUyODNTWkxHNEhOSE5yNDVIWk90d1l3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVp1RmlEbFZyN0JKVnM9SWlu. LAN G T, ZHAGN Y, DOU C, et al. Design and feature analysis of a thermally coupled corona discharge air disinfection device[J]. High Voltage Engineering, 2020. (2020-10-13). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=GDYJ2020101200O&v=MjUyODNTWkxHNEhOSE5yNDVIWk90d1l3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVp1RmlEbFZyN0JKVnM9SWlu. (in Chinese)
[28] GUO J, HUANG K, WANG J P. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation:A review[J]. Food Control, 2015, 50:482-490.
[29] RASTOGI R P, RICHA, KUMAR A, et al. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair[J]. Journal of Nucleic Acids, 2010, 2010:592980.
[30] 郑丹丹. 传染病房空气消毒技术分析[J]. 中国发明与专利, 2020, 17(S1):50-55. ZHENG D D. Analysis of air disinfection technology for infectious wards[J]. China Invention & Patent, 2020, 17(S1):50-55. (in Chinese)
[31] TSENG C C, LI C S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation[J]. Journal of Occupational and Environmental Hygiene, 2007, 4(6):400-405.
[32] HEILINGLOH C S, AUFDERHORST U W, SCHIPPER L, et al. Susceptibility of SARS-CoV-2 to UV irradiation[J]. American Journal of Infection Control, 2020, 48(10):1273-1275.
[33] INAGAKI H, SAITO A, SUGIYAMA H, et al. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation[J]. Emerging Microbes & Infections, 2020, 9(1):1744-1747.
[34] SABINO C P, SELLERA F P, SALES-MEDINA D F, et al. UV-C (254 nm) lethal doses for SARS-CoV-2[J]. Photodiagnosis and Photodynamic Therapy, 2020, 32:101995.
[35] 谢斌, 庞秀清, 杨东霞, 等. 手术室等离子体空气净化技术应用效果研究[J]. 中国消毒学杂志, 2019, 36(10):751-753, 756. XIE B, PANG X Q, YANG D X, et al. Study on the application effect of plasma air purification technology in operating room[J]. Chinese Journal of Disinfection, 2019, 36(10):751-753, 756. (in Chinese)
[36] FELDMANN F, SHUPERT W L, HADDOCK E, et al. Gamma irradiation as an effective method for inactivation of emerging viral pathogens[J]. American Journal of Tropical Medicine and Hygiene, 2019, 100(5):1275-1277.
[37] JEBRI S, HMAIED F, JOFRE J, et al. Effect of gamma irradiation on bacteriophages used as viral indicators[J]. Water Research, 2013, 47(11):3673-3678.
[38] PIRKER L, KRAJNC A P, MALEC J, et al. Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation[J]. Journal of Membrane Science, 2020, 619:118756.
[39] MOHAN S V, HEMALATHA M, KOPPERI H, et al. SARS-CoV-2 in environmental perspective:Occurrence, persistence, surveillance, inactivation and challenges[J]. Chemical Engineering Journal, 2021, 405:126893.
[40] 谢军, 林宝丽, 张清华, 等. 新型冠状病毒肺炎期间医院防控中分级消杀的探讨[J]. 东南国防医药, 2020, 22(3):310-312. XIE J, LIN B L, ZHANG Q H, et al. Discussion on hierarchical disinfection in hospital prevention and control during COVID-19[J]. Military Medical Journal of Southeast China, 2020, 22(3):310-312. (in Chinese)
[41] 宋江勤, 陈玫君, 曹伟伟, 等. 复方过氧乙酸在新型冠状病毒核酸检测实验室消毒中的应用[J]. 中国消毒学杂志, 2020, 37(3):184-185, 189. SONG J Q, CHEN M J, CAO W W, et al. Application of compound peroxyacetic acid in laboratory disinfection of SARS-CoV-2 nucleic acid detection[J]. Chinese Journal of Disinfection, 2020, 37(3):184-185, 189. (in Chinese)
[42] ZHANG D Y, LING H B, HUANG X, et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) viral RNA in septic tanks of Fangcang hospital[J]. Science of the Total Environment, 2020, 741:140445.
[43] CADNUM J L, JENCSON A L, LIVINGSTON S H, et al. Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2[J]. American Journal of Infection Control, 2020, 48(8):951-954.
[44] 王妍彦, 李炎, 李涛, 等. 低浓度二氧化氯气体对现场环境自然菌杀菌效果的研究[J]. 中国消毒学杂志, 2019, 36(12):892-895. WANG Y Y, LI Y, LI T, et al. Study on the bactericidal effect of low concentration chlorine dioxide gas on natural bacteria in the field environment[J]. Chinese Journal of Disinfection, 2019, 36(12):892-895. (in Chinese)
[45] WOLF C, VON GUNTEN U, KOHN T. Kinetics of inactivation of waterborne enteric viruses by ozone[J]. Environmental Science & Technology, 2018, 52(4):2170-2177.
[46] GOMES J, MATOS A, GMUREK M, et al. Ozone and photocatalytic processes for pathogens removal from water:A review[J]. Catalysts, 2019, 9(1):46.
[47] HUDSON J B, SHARMA M, PETRIC M. Inactivation of Norovirus by ozone gas in conditions relevant to healthcare[J]. Journal of Hospital Infection, 2007, 66(1):40-45.
[48] SHARMA M, HUDSON J B. Ozone gas is an effective and practical antibacterial agent[J]. American Journal of Infection Control, 2008, 36(8):559-563.
[49] KOWALSKI W J, BAHNFLETH W P, WHITTAM T S. Bactericidal effects of high airborne ozone concentrations on escherichia coli and staphylococcus aureus[J]. Ozone:Science & Engineering, 1998, 20(3):205-221.
[50] KIM J G, YOUSEF A E, DAVE S. Application of ozone for enhancing the microbiological safety and quality of foods:A review[J]. Journal of Food Protection, 1999, 62(9):1071-1087.
[51] CRISTIANO L. Could ozone be an effective disinfection measure against the novel coronavirus (SARS-CoV-2)?[J]. Journal of Preventive Medicine & Hygiene, 2020, 61(3):E301-E303.
[52] BLANCHARD E L, LAWRENCE J D, NOBLE J A, et al. Enveloped virus inactivation on personal protective equipment by exposure to ozone[J]. medRxiv, 2020, doi:10.1101/2020.05.23.20111435.
[53] ALIMOHAMMADI M, NADERI M. Effectiveness of ozone gas on airborne virus inactivation in enclosed spaces:A review study[J]. Ozone:Science & Engineering, 2021, 43(1):21-31.
[54] TIZAOUI C. Ozone:A potential oxidant for COVID-19 virus (SARS-CoV-2)[J]. Ozone:Science & Engineering, 2020, 42(5):378-385.
[55] YANO H, NAKANO R, SUZUKI Y, et al. Inactivation of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) by gaseous ozone treatment[J]. Journal of Hospital Infection, 2020, 106(4):837-838.
[56] WOLF C, PAVESE A, VON GUNTEN U, et al. Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent[J]. Water Research, 2019, 166:115088.
[57] ANDREEV S N, BARKHUDAROV E M, EGOROVA I Y, et al. Microwave gas-discharge device OVOD-1a sanitizing indoor air[J]. Journal of Physics:Conference Series, 2020, 1560:12071.
[58] IVASHKIN P, ANDREEV S, MORYAKOV I, et al. Microwave gasdischarge source of biologically active UV radiation and ozone as efficient means for sanitation of the indoor air[J]. IOP Conference Series:Earth and Environmental Science, 2019, 390(1):012026.
[59] KUBACKA A, DIEZ M S, ROJO D, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium[J]. Scientific Reports, 2014, 4:4134.
[60] FOSTER H A, DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide:Spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6):1847-1868.
[61] BOGDAN J, ZARZYŃSKA J, PĹAWIŃSKA-CZARNAK J. Comparison of infectious agents susceptibility to photocatalytic effects of nanosized titanium and zinc oxides:A practical approach[J]. Nanoscale Research Letters, 2015, 10:309.
[62] RINCÓN A G, PULGARIN C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia:Post-irradiation events in the dark and assessment of the effective disinfection time[J]. Applied Catalysis B:Environmental, 2004, 49(2):99-112.
[63] ZAHID M, PAPADOPOULOU E L, SUARATO G, et al. Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles[J]. ACS Applied Bio Materials, 2018, 1(4):1154-1164.
[64] LI Q, XIE R C, LI Y W, et al. Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide[J]. Environmental Science & Technology, 2016, 41(14):5050-5056.
[65] 沈芃. 银离子消毒与抗菌应用研究现状[J]. 中国消毒学杂志, 2007, 24(1):73-75. SHEN P. Research status of silver ion disinfection and antibacterial application[J]. Chinese Journal of Disinfection, 2007, 24(1):73-75. (in Chinese)
[66] 韩伟, 张泮河, 曹务春, 等. 一种新型网膜对SARS冠状病毒的抑制作用[J]. 生物化学与生物物理进展, 2004, 31(11):982-985. HAN W, ZHANG P H, CAO W C, et al. The inactivation effect of photocatalytic titanium apatite filter on SARS virus[J]. Progress in Biochemistry and Biophysics, 2004, 31(11):982-985. (in Chinese)
[67] WEISS C, CARRIERE M, FUSCO L, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic[J]. ACS Nano, 2020, 14(6):6383-6406.
[68] CASTAN~O N, CORDTS S, JALIL M K, et al. Fomite transmission and disinfection strategies for SARS-CoV-2 and related viruses[J]. arXiv:2005.11443, 2020.
[69] 张文钲, 韦卫军. 一种新型含银离子杀菌剂[J]. 稀有金属材料与工程, 1996, 25(1):48-51. ZHANG W Z, WEI W J. A novel bactericide with silver ion[J]. Rare Metal Materials and Engineering, 1996, 25(1):48-51. (in Chinese)
[70] MOHAMED E F, AWAD G. Photodegradation of gaseous toluene and disinfection of airborne microorganisms from polluted air using immobilized TiO2 nanoparticle photocatalyst-based filter[J]. Environmental Science and Pollution Research, 2020, 27(19):24507-24517.
[71] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. DAI D, NING W J, SHAO T. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20):1-9. (in Chinese)
[72] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. MEI D H, FANG Z, SHAO T. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4):1339-1358. (in Chinese)
[73] GAUNT L F, BEGGS C B, GEORGHIOU G E. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure:A review[J]. IEEE Transactions on Plasma Science, 2006, 34(4):1257-1269.
[74] EHLBECK J, SCHNABEL U, POLAK M, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination[J]. Journal of Physics D:Applied Physics, 2011, 44(1):13002.
[75] ASHMAN L E, MENASHI W P. Treatment of surface with low-pressure plasmas:US3701628. 1972-10-31.
[76] MENASHI W P. Treatment of surfaces:US33992364A. 1968.
[77] 徐学基, 诸定昌. 气体放电物理[M]. 上海:复旦大学出版社, 1996. XU X J, ZHU D C. Gas discharge physics[M]. Shanghai:Fudan University Press, 1996. (in Chinese)
[78] LAROUSSI M. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Transactions on Plasma Science, 1996, 24(3):1188-1191.
[79] LAROUSSI M, AKAN T. Arc-free atmospheric pressure cold plasma jets:A review[J]. Plasma Processes and Polymers, 2007, 4(9):777-788.
[80] LIANG Y D, WU Y, SUN K, et al. Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma[J]. Environmental Science & Technology, 2012, 46(6):3360-3368.
[81] WU Y, LIANG Y D, WEI K, et al. Rapid allergen inactivation using atmospheric pressure cold plasma[J]. Environmental Science & Technology, 2014, 48(5):2901-2909.
[82] BISAG A, ISABELLI P, LAURITA R, et al. Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission[J]. Plasma Processes and Polymers, 2020, 17(10):2000154.
[83] CHEN Z T, GARCIA G Jr, ARUMUGASWAMI V, et al. Cold atmospheric plasma for SARS-CoV-2 inactivation[J]. Physics of Fluids, 2020, 32(11):111702.
[84] WANG H, ZHANG L Y, LUO H Y, et al. Sterilizing processes and mechanisms for treatment of Escherichia coli with dielectric-barrier discharge plasma[J]. Applied & Environmental Microbiology, 2020, 86(1):e01907-19.
[85] ETO H, ONO Y, OGINO A, et al. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge[J]. Applied Physics Letters, 2008, 93(22):221502.
[86] DE GEYTER N, MORENT R. Nonthermal plasma sterilization of living and nonliving surfaces[J]. Annual Review of Biomedical Engineering, 2012, 14:255-274.
[87] LAROUSSI M, TENDERO C, LU X P, et al. Inactivation of bacteria by the plasma pencil[J]. Plasma Processes and Polymers, 2010, 3(6-7):470-473.
[88] FILIPIC A, GUTIERREZ-AGUIRRE I, PRIMC G, et al. Cold plasma, a new hope in the field of virus inactivation[J]. Trends in Biotechnology, 2020, 38(11):1278-1291.
[89] THIRUMDAS R, KOTHAKOTA A, ANNAPURE U, et al. Plasma activated water (PAW):Chemistry, physico-chemical properties, applications in food and agriculture[J]. Trends in Food Science & Technology, 2018, 77:21-31.
[90] KAUSHIK N K, GHIMIRE B, LI Y, et al. Biological and medical applications of plasma-activated media, water and solutions[J]. Biological Chemistry, 2019, 400(1):39-62.
[91] KAMGANG-YOUBI G, HERRY J M, MEYLHEUC T, et al. Microbial inactivation using plasma-activated water obtained by gliding electric discharges[J]. Letters in Applied Microbiology, 2009, 48(1):13-18.
[92] KAMGANG-YOUBI G, HERRY J M, BRISSET J L, et al. Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state:Case of Hafnia alvei inactivation by Plasma Activated Water[J]. Applied Microbiology and Biotechnology, 2008, 81(3):449-457.
[93] XI W, WANG W, LIU Z J, et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity[J]. Plasma Sources Science and Technology, 2020, 29(9):095013.
[94] GUO L, YAO Z Q, YANG L, et al. Plasma-activated water:An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.127742.
[95] YU L, PEEL G K, CHEEMA F H, et al. Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system[J]. Materials Today Physics, 2020, 15:100249.
[96] 王志达, 戈有林, 穆青, 等. 臭氧与紫外线协同灭活脊髓灰质炎病毒效果的研究[J]. 中国消毒学杂志, 2006, 23(6):503-505. WANG Z D, GE Y L, MU Q, et al. Study on synergetic efficacy of ozone and ultraviolet rays in inactivating poliovirus[J]. Chinese Journal of Disinfection, 2006, 23(6):503-505. (in Chinese)
[97] 房小健. 紫外线联合臭氧催化对室内空气动态消毒的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. FANG X J. Research on dynamic disinfection of indoor air applying UV and catalytic ozonation[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
[98] LUO H Y, LIANG Z, LV B, et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Applied Physics Letters, 2007, 91(22):221504.
[99] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1):1-11. WANG X X. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1):1-11. (in Chinese)
[100] LUO H Y, LIANG Z, WANG X X, et al. Homogeneous dielectric barrier discharge in nitrogen at atmospheric pressure[J]. Journal of Physics D:Applied Physics, 2010, 43(15):155201.
[101] ZHANG L Y, WANG H, LUO H Y. Uncovering the inactivation kinetics of Escherichia coli in saline by atmospheric DBD plasma using ATR FT-IR[J]. Plasma Processes and Polymers, 2020, 17(9):1900197.
[1] 张婉清, 苏萍, 马建设, 巩马理. 宿主无损光照消毒技术综述[J]. 清华大学学报(自然科学版), 2024, 64(2): 370-380.
[2] 吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2): 89-95.
[3] 黄梦瑶, 黄丽达, 袁宏永, 刘罡. 社交隔离对COVID-19的发展影响[J]. 清华大学学报(自然科学版), 2021, 61(2): 96-103.
[4] 孔啸, 刘乃嘉, 张梦豪, 徐明伟. COVID-19疫情前后高校在线教学数据分析[J]. 清华大学学报(自然科学版), 2021, 61(2): 104-116.
[5] 邱桐, 陈湘生, 苏栋. 城市地下空间综合韧性防灾抗疫建设框架[J]. 清华大学学报(自然科学版), 2021, 61(2): 117-127.
[6] 吴贵清, 葛楠, 杨安, 李和平, 包成玉. 压力对双射流电弧等离子体特性的影响[J]. 清华大学学报(自然科学版), 2014, 54(1): 68-72.
[7] 王志斌, 陈国旭, 王哲, 葛楠, 李和平, 包成玉. 三电极非热电弧发生器放电模式的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(1): 73-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn