Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (4): 377-384    DOI: 10.16511/j.cnki.qhdxxb.2021.25.006
  论文 本期目录 | 过刊浏览 | 高级检索 |
中国核电和其他电力技术环境影响综合评价
王彦哲, 周胜, 王宇, 秦旭映, 陈福冰, 欧训民
清华大学 核能与新能源技术研究院, 北京 100084
Comprehensive assessment of the environmental impact of China's nuclear and other power generation technologies
WANG Yanzhe, ZHOU Sheng, WANG Yu, QIN Xuying, CHEN Fubing, OU Xunmin
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2365 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 核电是清洁的低碳能源,是实现我国2060年“碳中和”目标的重要技术选择,其放射性排放也是公众关注的焦点。该文通过构建统一的评价边界,采用生命周期评价(life cycle assessment,LCA)方法,分环节定量测算了核电与其他发电技术的单位发电量二氧化碳排放;并基于文献调研,分析和估算了单位发电量的大气污染物(SO2、NOx和PM2.5)和放射性排放;最后对不同发电方式的二氧化碳、大气污染物和放射性排放的环境影响进行综合评价。研究表明,核电和可再生能源发电可以使单位发电量碳排放降低90%以上,并大幅度减少大气污染物排放,而核电对公众的放射性影响与煤电相当,或低于煤电。因此,应大力加强核电的公众可接受性的科普教育,制定持续稳定的核能中长期发展战略,推动电力系统清洁低碳转型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彦哲
周胜
王宇
秦旭映
陈福冰
欧训民
关键词 核电碳中和生命周期评价(LCA)低碳转型    
Abstract:Nuclear power is a clean, low carbon technology that will help China achieve carbon neutrality by 2060. However, the radiological impacts are also the focus of public concern. This study used the life cycle assessment (LCA) method to calculate the carbon dioxide emissions per unit electricity generated by nuclear power and other power generation technologies. This study also estimated the air pollutants and radiological impacts based on a literature review with a comprehensive assessment of these environmental impacts. The results show that nuclear power and renewable energy generation can reduce CO2 emissions per unit of electricity by more than 90% and greatly reduce air pollution. In addition, nuclear power has similar or lower radioactive impact on the public than coal power. Therefore, the government should strengthen public understanding and acceptance of nuclear power, formulate a long-term nuclear energy development strategy, and promote the clean, low-carbon transformation of the electric power system.
Key wordsnuclear power    carbon neutrality    life cycle assessment (LCA)    low-carbon transformation
收稿日期: 2020-12-25      出版日期: 2021-04-16
基金资助:周胜,副研究员,E-mail:zhshinet@tsinghua.edu.cn
引用本文:   
王彦哲, 周胜, 王宇, 秦旭映, 陈福冰, 欧训民. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报(自然科学版), 2021, 61(4): 377-384.
WANG Yanzhe, ZHOU Sheng, WANG Yu, QIN Xuying, CHEN Fubing, OU Xunmin. Comprehensive assessment of the environmental impact of China's nuclear and other power generation technologies. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 377-384.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.006  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I4/377
  
  
  
  
  
  
[1] 国家统计局. 能源生产情况统计数据最新发布[EB/OL]. (2021-01-08)[2021-01-08]. http://www.stats.gov.cn/tjsj/zxfb/. National Bureau of Statistics. The latest release, energy production statistics[EB/OL]. (2021-01-08)[2021-01-08]. http://www.stats.gov.cn/tjsj/zxfb/. (in Chinese)
[2] 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41(9):12-18. LU Z X, HUANG H, SHAN B G, et al. Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):12-18. (in Chinese)
[3] MCCOMBIE C, JEFFERSON M. Renewable and nuclear electricity:Comparison of environmental impacts[J]. Energy Policy, 2016, 96:758-769.
[4] ASDRUBALI F, BALDINELLI G, D'ALESSANDRO F, et al. Life cycle assessment of electricity production from renewable energies:Review and results harmonization[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1113-1122.
[5] ALI RAJAEIFAR M, GHANAVATI H, DASHTI B B, et al. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies:A comparative review[J]. Renewable and Sustainable Energy Reviews, 2017, 79:414-439.
[6] ATILGAN B, AZAPAGIC A. An integrated life cycle sustainability assessment of electricity generation in Turkey[J]. Energy Policy, 2016, 93:168-186.
[7] 张莉, 王俏丽, 李伟, 等. 电力行业温室气体排放情景分析[J]. 浙江大学学报(工学版), 2015, 49(12):2244-2251. ZHANG L, WANG Q L, LI W, et al. Scenario analysis on greenhouse gas emission of power sector[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(12):2244-2251. (in Chinese)
[8] KABAYO J, MARQUES P, GARCIA R, et al. Life-cycle sustainability assessment of key electricity generation systems in Portugal[J]. Energy, 2019, 176:131-142.
[9] 姜子英, 张燕齐, 陈晓秋, 等. 中国燃煤发电排放的放射性环境影响评价研究[J]. 辐射防护, 2018, 38(3):177-185. JIANG Z Y, ZHANG Y Q, CHEN X Q, et al. Radiological impacts assessment of coal-fired power plants in China[J]. Radiation Protection, 2018, 38(3):177-185. (in Chinese)
[10] GARCÍA-GUSANO D, GARRAÍN D, DUFOUR J. Prospective life cycle assessment of the Spanish electricity production[J]. Renewable and Sustainable Energy Reviews, 2017, 75:21-34.
[11] 姜子英, 潘自强, 邢江, 等. 中国核电能源链的生命周期温室气体排放研究[J]. 中国环境科学, 2015(11):3502-3510. JIANG Z Y, PAN Z Q, XING J, et al. Greenhouse gas emissions from nuclear power chain life cycle in China[J]. China Environmental Science, 2015(11):3502-3510. (in Chinese)
[12] 徐静馨, 朱法华, 王圣, 等. 超低排放燃煤电厂和燃气电厂综合对比[J]. 中国电力, 2020, 53(2):164-172, 179. XU J X, ZHU F H, WANG S, et al. Comprehensive comparison of ultra-low emission coal-fired power plants and gas-fired power plants[J]. Electric Power, 2020, 53(2):164-172, 179. (in Chinese)
[13] 宋国辉, 唐璐, 姜武, 等. 2×200 MW级某天然气热电联产项目的生命周期环境影响评价[J]. 中国电力, 2014, 47(12):149-155. SONG G H, TANG L, JIANG W, et al. Life-cycle environmental impact assessment of a typical 2×200 MW natural gas combined cycle-combined heat and power plant[J]. Electric Power, 2014, 47(12):149-155. (in Chinese)
[14] LI Z, DU H L, XIAO Y, et al. Carbon footprints of two large hydro-projects in China:Life-cycle assessment according to ISO/TS 14067[J]. Renewable Energy, 2017, 114:534-546.
[15] 谢泽琼, 马晓茜, 黄泽浩, 等. 太阳能光伏发电全生命周期评价[J]. 环境污染与防治, 2013, 35(12):106-110. XIE Z Q, MA X Q, HUANG Z H, et al. Life cycle assessment of photovoltaic electricity generation[J]. Environmental Pollution and Control, 2013, 35(12):106-110. (in Chinese)
[16] 郭敏晓, 蔡闻佳, 王灿, 等. 风电场生命周期CO2排放核算与不确定性分析[J]. 中国环境科学, 2012, 32(4):742-747. GUO M X, CAI W J, WANG C, et al. Quantifying CO2 emissions of one wind farm using life cycle assessment and uncertainty analysis[J]. China Environmental Science, 2012, 32(4):742-747. (in Chinese)
[17] LI X, OU X M, ZHANG X, et al. Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010[J]. Energy, 2013, 50:15-23.
[18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 温室气体排放核算与报告要求 第1部分:发电企业:GB/T 32151.1-2015[S]. 北京:中国标准出版社, 2016. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Requirements of the greenhouse gas emission accounting and reporting-Part 1:Power generation enterprise:GB/T 32151.1-2015[S]. Beijing:Standards Press of China, 2016. (in Chinese)
[19] WEISSER D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies[J]. Energy, 2007, 32(9):1543-1559.
[20] 刘胜强, 毛显强, 邢有凯. 中国新能源发电生命周期温室气体减排潜力比较和分析[J]. 气候变化研究进展, 2012, 8(1):48-53. LIU S Q, MAO X Q, XING Y K. Estimation and comparison of greenhouse gas mitigation potential of new energy by life cycle assessment in China[J]. Advances in Climate Change Research, 2012, 8(1):48-53. (in Chinese)
[21] 廖夏伟, 谭清良, 张雯, 等. 中国发电行业生命周期温室气体减排潜力及成本分析[J]. 北京大学学报(自然科学版), 2013, 49(5):885-891. LIAO X W, TAN Q L, ZHANG W, et al. Analysis of life-cycle greenhouse gas emission reduction potential and cost for China's power generation sector[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(5):885-891. (in Chinese)
[22] JACOBSON M Z. 100% clean, renewable energy and storage for everything[M]. Stanford University, California:Cambridge University Press, 2019.
[23] 洪巧巧. 燃煤电厂烟气脱硫脱硝除尘技术生命周期评价[D]. 杭州:浙江大学, 2015. HONG Q Q. LCA of desulfurization, denitration and dedusting technologies in coal-fired power plants[D]. Hangzhou:Zhejiang University, 2015. (in Chinese)
[24] 王韵杰, 张少君, 郝吉明. 中国大气污染治理:进展·挑战·路径[J]. 环境科学研究, 2019, 32(10):1755-1762. WANG Y J, ZHANG S J, HAO J M. Air pollution control in China:Progress, challenges and future pathways[J]. Research of Environmental Sciences, 2019, 32(10):1755-1762. (in Chinese)
[25] 姜子英. 我国核电与煤电的外部成本研究[D]. 北京:清华大学, 2008. JIANG Z Y. Study on the external cost of nuclear power and coal power in China[D]. Beijing:Tsinghua University, 2008. (in Chinese)
[26] 胡志锋, 马晓茜, 李双双, 等. 水力发电技术的生命周期评价[J]. 环境污染与防治, 2013, 35(6):93-97. HU Z F, MA X Q, LI S S, et al. Life cycle assessment of hydropower technology[J]. Environmental Pollution and Control, 2013, 35(6):93-97. (in Chinese)
[27] 闫风光, 赵晓丽. 基于环境外部性的风电经济性评价[J]. 现代电力, 2016, 33(4):79-86. YAN F G, ZHAO X L. Economic evaluation of wind power generation by considering environmental externality[J]. Modern Electric Power, 2016, 33(4):79-86. (in Chinese)
[28] "核电链和煤电链排放的放射性影响评价"项目组. 不同发电能源排放的放射性影响评价[M]. 北京:中国原子能出版社, 2018. Radiological Impact Assessment Project for Nuclear and Coal Chain Emissions. Radiological impact assessment of emissions from different power generation sources[M]. Beijing:China Atomic Energy Press, 2018. (in Chinese)
[1] 杨斌, 刘仲铠, 林柯利, 廖万雄, 王乔. 面向碳中和与先进动力的燃烧反应动力学研究方法进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 663-677.
[2] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[3] 刘毅,何小赛. 基于生命周期分析的中国城镇住宅物化环境影响评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn