Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (4): 302-311    DOI: 10.16511/j.cnki.qhdxxb.2021.25.007
  综述 本期目录 | 过刊浏览 | 高级检索 |
能源互联网推动下的氢能发展
曹军文, 郑云, 张文强, 于波
清华大学 核能与新能源技术研究院, 北京 100084
Hydrogen energy development driven by the Energy Internet
CAO Junwen, ZHENG Yun, ZHANG Wenqiang, YU Bo
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(10076 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着当前以化石燃料为主的能源体系资源消耗和环境污染问题日益严重,能源结构转型已经成为世界能源体系发展的重要趋势。能源互联网是以信息传递为基础,以可再生能源和核能为主要一次能源供体,以电能为核心,以储能技术为媒介的新型能源体系,具有智能化、清洁化、操作灵活化等优点,是未来能源结构发展的理想形式。氢能具有热值高、无污染、可再生、长周期储存和远距离运输等优点,能够实现“可再生能源-电能-氢能”的多样化转换,可作为能量储存、传递和转换媒介在能源互联网构建中发挥重要作用。该文从能源互联网的概念出发,阐述了氢能在能源互联网中的重要地位,并结合清华大学核能与新能源技术研究院(简称核研院)在核能制氢方面的研究成果,综述了氢能和氢储能技术在能源互联网体系下的关键技术的发展现状,并对氢储能技术的未来发展做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹军文
郑云
张文强
于波
关键词 氢能清洁能源能源互联网氢储能技术    
Abstract:The increasing resource consumption and environmental pollution in the current energy supply system dominated by fossil fuels is leading to a transformation of the energy structure of the world's energy supply. The Energy Internet is a new energy system based on information transmission, with renewable energy and nuclear energy as the primary energy supplies, with electrical energy as the core, and extensive energy storage. This ideal, future energy structure has the advantages of intellectualization, cleanliness, flexibility and others. Hydrogen is a secondary energy carrier with high caloric value, no pollution when burned, good long-term storage potential and easy long-distance transport. Thus, hydrogen will play a vital role in the Energy Internet as a energy storage, transmission and conversion medium. This article describes the importance of hydrogen in the future Energy Internet. In addition, this article relates recent progress in hydrogen production from nuclear energy in the Institute of Nuclear and New Energy Technology (INET), Tsinghua University, to the current status of the development of key technologies for hydrogen and its storage in the Energy Internet system along with future development prospects for hydrogen storage technologies.
Key wordshydrogen energy    clear energy    Energy Internet    hydrogen energy storage
收稿日期: 2020-11-12      出版日期: 2021-04-16
基金资助:于波,副研究员,E-mail:cassy_yu@tsinghua.edu.cn
引用本文:   
曹军文, 郑云, 张文强, 于波. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4): 302-311.
CAO Junwen, ZHENG Yun, ZHANG Wenqiang, YU Bo. Hydrogen energy development driven by the Energy Internet. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 302-311.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.007  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I4/302
  
  
  
  
  
  
  
[1] DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396):eaas9793.
[2] 杰里米·里夫金. 第三次工业革命:世界经济即将被颠覆, 新能源与商务、政治、教育的全面革命[M]. 张体伟, 孙豫宁, 译. 台北:经济新潮社, 2013. RIFKIN J. The third industrial revolution:How lateral power is transforming energy, the economy, and the world[M]. ZHANG T W, SUN Y N, trans. Taipei:Economic Trendy Society, 2013. (in Chinese)
[3] SUN H B, GUO Q L, ZHANG B M, et al. Integrated energy management system:Concept, design, and demonstration in China[J]. IEEE Electrification Magazine, 2018, 6(2):42-50.
[4] HOSSEINI S E, WAHID M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6):4110-4131.
[5] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题[J]. 自动化学报, 2017, 43(2):176-194. SUN Q Y, TENG F, ZHANG H G. Energy internet and its key control issues[J]. Journal Automatica Sinica, 2017, 43(2):176-194. (in Chinese)
[6] 孙宏斌. 能源互联网[M]. 北京:科学出版社, 2020. SUN H B. Energy internet[M]. Beijing:Science Press, 2020. (in Chinese)
[7] 陈海峰. 2018全球能源互联网大会在京举行[N/OL]. 中国新闻网, 2018-03-28. http://www.chinanews.com/ny/2018/03-28/8478343.shtml. CHEN H F. 2018 global Energy Internet conference held in Beijing[N/OL]. China News, 2018-03-28. http://www.chinanews.com/ny/2018/03-28/8478343.shtml. (in Chinese)
[8] 英文期刊编辑部. 欧洲能源互联网规划研究报告[EB/OL]. (2019-05-17). https://mp.weixin.qq.com/s/Y655cS2Ck93jBL-Ztbxt4A. GEIDCO. Europe energy interconnection research report[EB/OL]. (2019-05-17). https://mp.weixin.qq.com/s/Y655cS2Ck93jBL-Ztbxt4A. (in Chinese)
[9] 先进能源科技战略情报研究中心. 澳大利亚可再生能源署资助电网消纳、氢能和工业脱碳研究[EB/OL]. (2019-11-22). https://mp.weixin.qq.com/s/4DtigcFAhfELzEc9DgMk1g. Strategic Intelligence Research Centre for Advanced Energy Technologies. Renewable energy Australia funds research on grid consumption, hydrogen energy and industrial decarbonization[EB/OL]. (2019-11-22). https://mp.weixin.qq.com/s/4DtigcFAhfELzEc9DgMk1g. (in Chinese)
[10] 韦晓广, 高仕斌, 臧天磊, 等. 社会能源互联网:概念、架构和展望[J]. 中国电机工程学报, 2018, 38(17):4969-4986. WEI X G, GAO S B, ZANG T L, et al. Social energy internet:Concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17):4969-4986. (in Chinese)
[11] 梁海峰, 李晓航, 高亚静. 首批"互联网+"智慧能源示范项目特点研究[J]. 电力科学与工程, 2018, 34(9):1-6. LIANG H F, LI X H, GAO Y J. Characteristics of the first batch of Energy Internet projects[J]. Electric Power Science and Engineering, 2018, 34(9):1-6. (in Chinese)
[12] 朱宇婷. 2019国家能源互联网大会|泛在能源 智慧互联[N/OL]. 中国电力新闻网, 2019-10-14. http://www.cpnn.com.cn/zdyw/201910/t20191014_1170443.html. ZHU Y T. 2019 national Energy Internet conference|ubiquitous energy intelligent interconnection[N/OL]. China Power News, 2019-10-14. http://www.cpnn.com.cn/zdyw/201910/t20191014_1170443.html. (in Chinese)
[13] 北京日报. 北京市2020年政府工作报告[EB/OL]. (2020-01-20). http://district.ce.cn/newarea/roll/202001/20/t20200120_34162178.shtml. Beijing Daily. Report on the work of Beijing municipal government in 2020[EB/OL]. (2020-01-20). http://district.ce.cn/newarea/roll/202001/20/t20200120_34162178.shtml. (in Chinese)
[14] International Energy Agency. Technology roadmap hydrogen and fuel cells[R]. IEA, 2015. https://webstore.iea.org/technology-roadmap-hydrogen-and-fuel-cell.
[15] 沈洲, 周建华, 袁晓冬, 等. 能源互联网的发展现状[J]. 江苏电机工程, 2014, 33(1):81-84.SHEN Z, ZHOU J H, YUAN D, et al. Development and suggestion of the Energy Internet[J]. Jiangsu Electrical Engineering, 2014, 33(1):81-84. (in Chinese)
[16] 董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15):1-11. DONG Z Y, ZHAO J H, WEN F S, et al. From smart grid to Energy Internet:Basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15):1-11. (in Chinese)
[17] 刘振亚. 全球能源互联网与中国电力转型之路[J]. 当代电力文化, 2015(11):12-13. LIU Z Y. Global Energy Internet and the road of power transformation in China[J]. Electricity & Culture Today, 2015(11):12-13. (in Chinese)
[18] 慈松, 李宏佳, 陈鑫, 等. 能源互联网重要基础支撑:分布式储能技术的探索与实践[J]. 中国科学:信息科学, 2014, 44(6):762-773. CI S, LI H J, CHEN X, et al. The cornerstone of Energy Internet:Research and practice of distributed energy storage technology[J]. Science in China:Information Sciences, 2014, 44(6):762-773. (in Chinese)
[19] HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system:The Energy Internet[J]. Proceedings of the IEEE, 2011, 99(1):133-148.
[20] 曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网"源-网-荷-储"协调优化运营模式及关键技术[J]. 电网技术, 2016, 40(1):114-124. ZENG M, YANG Y Q, LIU D N, et al. "Generation-Grid-Load-Storage" coordinative optimal operation mode of Energy Internet and key technologies[J]. Power System Technology, 2016, 40(1):114-124. (in Chinese)
[21] 张作义, 原鲲. 我国高温气冷堆技术及产业化发展[J]. 现代物理知识, 2018, 30(4):4-10. ZHANG Z Y, YUAN K. China's high temperature gas-cooled reactor technology and industrial development[J]. Modern Physics, 2018, 30(4):4-10. (in Chinese)
[22] 周孝信. 新一代电力系统与能源互联网[J]. 电气应用, 2019, 38(1):4-6. ZHOU X X. New generation power system and Energy Internet[J]. Electrotechnical Application, 2019, 38(1):4-6. (in Chinese)
[23] 霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5(2):197-203. HUO X X, WANG J, JIANG L, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2):197-203. (in Chinese)
[24] ZHANG P, WANG L J, CHEN S Z, et al. Progress of nuclear hydrogen production through the iodine-sulfur process in China[J]. Renewable and Sustainable Energy Reviews, 2018, 81:1802-1812.
[25] SUN Q, GAO Q X, ZHANG P, et al. Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production[J]. Applied Energy, 2020, 277:115611.
[26] WU T, ZHANG W Q, LI Y F, et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Advanced Energy Materials, 2018, 8(33):1802203.
[27] GAO Q X, SUN Q, ZHANG P, et al. Sulfuric acid decomposition in the iodine-sulfur cycle using heat from a very high temperature gas-cooled reactor[J]. International Journal of Hydrogen Energy, 2020. DOI:10. 1016/j. ijhydene. 2020. 08. 074.
[28] ZHANG P, SU T, CHEN Q H, et al. Catalytic decomposition of sulfuric acid on composite oxides and Pt/SiC[J]. International Journal of Hydrogen Energy, 2012, 37(1):760-764.
[29] ZHANG P, ZHOU C L, GUO H F, et al. Design of integrated laboratory-scale iodine sulfur hydrogen production cycle at INET[J]. International Journal of Energy Research, 2016, 40(11):1509-1517.
[30] ZHENG Y, ZHANG Q W, LI Y F, et al. Energy related CO2 conversion and utilization:Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017, 40:512-539.
[31] LI Y F, ZHANG W Q, WU T, et al. Segregation induced self-assembly of highly active perovskite for rapid oxygen reduction reaction[J]. Advanced Energy Materials, 2018, 8(29):1801893.
[32] 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26(2):212-229. ZHANG W Q, YU B. Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of Electrochemistry, 2020, 26(2):212-229. (in Chinese)
[33] O'MEARA S. China's plan to cut coal and boost green growth[J]. Nature, 2020, 584(7822):S1-S3.
[34] 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3):303-312. XING X T, LIN J, SONG Y H, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3):303-312. (in Chinese)
[35] 袁铁江, 胡颖. 大规模氢储能技术[J]. 电气时代, 2019(1):41-42. YUAN T J, HU Y. Large-scale hydrogen storage technology[J]. Electric Age, 2019(1):41-42. (in Chinese)
[36] LI Z, ZHANG W D, ZHANG R, et al. Development of renewable energy multi-energy complementary hydrogen energy system (A case study in China):A review[J]. Energy Exploration & Exploitation, 2020, 38(6):2099- 2127.
[37] 国务院. 国务院关于印发"十三五"国家科技创新规划的通知[EB/OL]. 北京, (2016-07-28). http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm. The State Council. Notice of The State Council on the issuance of the 13th Five-Year Plan for scientific and technological innovation[EB/OL]. Beijing, (2016-07-28). http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm. (in Chinese)
[38] 国家能源局. 关于促进储能技术与产业发展的指导意见[EB/OL]. 北京, (2017-10-11). http://www.nea.gov.cn/2017-10/11/c_136672015.htm. National Energy Administration. Guidance on promoting energy storage technology and industrial development[EB/OL]. Beijing, (2017-10-11). http://www.nea.gov.cn/2017-10/11/c_136672015.htm. (in Chinese)
[39] 李克强. 2019年政府工作报告[EB/OL]. 北京, (2019-03-05). http://www.gov.cn/zhuanti/2019qglh/2019lhzfgzbg/. LI K Q. Report on the work of the government in 2019[EB/OL]. Beijing, (2019-03-05). http://www.gov.cn/zhuanti/2019qglh/2019lhzfgzbg/. (in Chinese)
[40] 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6):868-871. LIU M Y, YU B, XU J M. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University (Science & Technology), 2009, 49(6):868-871. (in Chinese)
[41] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R]. 2019. China Hydrogen Alliance. White paper on hydrogen energy and fuel cell industry in China[R]. 2019. (in Chinese)
[42] SASAKI K, LI H W, HAYASHI A, et al. Hydrogen energy engineering:A Japanese perspective[M]. Tokyo:Springer Japan, 2016.
[43] 时史君. 日本氢能白皮书 (第四部分:氢能源技术)[EB/OL]. (2016-08-31). http://www.360doc.com/content/16/0831/08/31562646_587187626.shtml. SHI S J. White paper on hydrogen energy in Japan (Part IV:Hydrogen Energy Technology)[EB/OL]. (2016-08-31). http://www.360doc.com/content/16/0831/08/31562646_587187626.shtml. (in Chinese)
[44] 张国荣, 陈夏冉. 能源互联网未来发展综述[J]. 电力自动化设备, 2017, 37(1):1-7. ZHANG G R, CHEN X R. Future development of energy internet[J]. Electric Power Automation Equipment, 2017, 37(1):1-7. (in Chinese)
[45] 周孝信. 以互联网思维审视和改变传统电力系统[J]. 电气应用, 2019, 38(7):4-8. ZHOU X X. Review and change of traditional power system with Internet thinking[J]. Electrical Applications, 2019, 38(7):4-8. (in Chinese)
[46] 金雪, 庄雨轩, 王辉, 等. 氢储能解决弃风弃光问题的可行性分析研究[J]. 电工电气, 2019(4):63-68. JIN X, ZHUANG Y X, WANG H, et al. Feasibility analysis research on abandoning wind and solar energy with hydrogen energy storage technology[J]. Electrotechnics Electric, 2019(4):63-68. (in Chinese)
[47] 朱永强, 郝嘉诚, 赵娜, 等. 能源互联网中的储能需求、储能的功能和作用方式[J]. 电工电能新技术, 2018, 37(2):68-75. ZHU Y Q, HAO J C, ZHAO N, et al. Demands, functions and action manners of energy storage in Energy Internet[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2):68-75. (in Chinese)
[48] 金虹, 衣进. 当前储能市场和储能经济性分析[J]. 储能科学与技术, 2012, 1(2):103-111. JIN H, YI J. Market and economic analysis of the energy storage industry[J]. Energy Storage Science and Technology, 2012, 1(2):103-111. (in Chinese)
[1] 李爽, 史翊翔, 蔡宁生. 面向能源转型的化石能源与可再生能源制氢技术进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 655-662.
[2] 易姝娴, 袁立强, 李凯, 沈瑜, 赵争鸣. 面向区域电能路由器的高效仿真建模方法[J]. 清华大学学报(自然科学版), 2019, 59(10): 796-806.
[3] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
[4] 施陈博, 苗权, 陈启鑫. 基于CPS的能源互联网关键技术与应用[J]. 清华大学学报(自然科学版), 2016, 56(9): 930-936,941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn