Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 312-320    DOI: 10.16511/j.cnki.qhdxxb.2021.25.009
  能源与动力工程 本期目录 | 过刊浏览 | 高级检索 |
考虑余热利用的工业园区全局热集成
冀峰, 孙小静, 刘琳琳, 都健
大连理工大学 化工学院, 化工系统工程研究所, 大连 116024
Total industrial park site heat integration with waste heat utilization
JI Feng, SUN Xiaojing, LIU Linlin, DU Jian
Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(7936 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 考虑工业园区中的余热再利用,将公用工程系统、换热器网络(heat exchanger network,HEN)、制冷系统进行同步综合是降低园区整体能耗的关键。针对该问题,该文提出了一个基于数学规划思想的工业园区全局热集成方法。通过分析热量相关系统间的潜在作用关系,建立了一个经工艺流股余热发生蒸汽,并考虑厂际间HEN、热公用工程系统、循环水系统和吸收式制冷循环(absorption refrigeration cycle,ARC)系统耦合关系的全局热集成超结构,通过构建混合整数非线性规划(mixed-integer nonlinear programming,MINLP)数学模型,以经济性最优为优化目标设计园区内流股的换热匹配、多等级蒸汽的分配权衡、以及冷冻水和冷却水的使用。其中,过程热流股发生的蒸汽与公用工程蒸汽作为园区热源为过程冷流股和ARC系统提供多等级蒸汽;冷却水与冷冻水系统作为园区冷源满足工艺热流股和ARC系统的制冷需求。最后,通过案例计算分析了余热利用对园区全局能量分配的影响。结果表明:考虑余热利用的全局热集成方法能显著降低园区总体能耗及投资,证明了所提方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冀峰
孙小静
刘琳琳
都健
关键词 工业园区全局能量集成换热器网络(HEN)余热制冷优化    
Abstract:Integrated utility systems, heat exchanger networks (HEN), and refrigeration systems can significantly improve waste heat utilization in industrial parks. This paper presents a programmed approach for total site heat integration. A site heat integration model was developed that includes interactions between the inter-plant HEN, steam system, cooling water system, and absorption cooling (ARC) system and was formulated as a mixed-integer nonlinear programming (MINLP) model. In this model, steam generated from the hot process stream and the utility steam are used as a heat source to heat the cold stream and drive the ARC system. The cooling water and chilled water systems are then used as cooling sources to meet the cooling requirements of the ARC system and the hot stream. Analyses of three plants shows the effect of waste heat utilization on the total energy distribution at the site. The results show that this method significantly reduces the energy consumption and investment by making the overall system configuration more efficient.
Key wordsindustrial park    total site heat integration    heat exchanger network (HEN)    waste heat refrigeration    optimization
收稿日期: 2020-11-28      出版日期: 2022-01-22
基金资助:国家自然科学基金资助项目(21878034)
通讯作者: 刘琳琳,副教授,E-mail:liulinlin@dlut.edu.cn      E-mail: liulinlin@dlut.edu.cn
作者简介: 冀峰(1997-),男,硕士研究生
引用本文:   
冀峰, 孙小静, 刘琳琳, 都健. 考虑余热利用的工业园区全局热集成[J]. 清华大学学报(自然科学版), 2022, 62(2): 312-320.
JI Feng, SUN Xiaojing, LIU Linlin, DU Jian. Total industrial park site heat integration with waste heat utilization. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 312-320.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.009  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/312
  
  
  
  
  
  
[1] DHOLE V R, LINNHOFF B. Total site targets for fuel, co-generation, emissions, and cooling[J]. Computers & Chemical Engineering, 1993, 17(S1):S101-S109.
[2] RODERA H, BAGAJEWICZ M J. Multipurpose heat-exchanger networks for heat integration across plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23):5585-5603.
[3] WANG Y F, CHANG C L, FENG X. A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods[J]. Energy, 2015, 90:56-67.
[4] LIU L L, WU C H, ZHUANG Y, et al. Interplant heat integration method involving multiple intermediate fluid circles and agents:Single-period and multiperiod designs[J]. Industrial & Engineering Chemistry Research, 2020, 59(10):4698-4711.
[5] MA J Z, CHANG C L, WANG Y F, et al. Multi-objective optimization of multi-period interplant heat integration using steam system[J]. Energy, 2018, 159:950-960.
[6] LIU L L, SHENG Y, ZHUANG Y, et al. Multiobjective optimization of interplant heat exchanger networks considering utility steam supply and various locations of interplant steam generation/utilization[J]. Industrial & Engineering Chemistry Research, 2020, 59(32):14433-14446.
[7] YANG S. Study on low-grade waste heat utilization in cocal-to-SNG process[D]. Guangzhou:South China University of Technology, 2017. (in Chinese)杨声. 煤制天然气过程低品位余热利用的研究[D]. 广州:华南理工大学, 2017.
[8] TORA E A, EL-HALWAGI M M. Integration of solar energy into absorption refrigerators and industrial processes[J]. Chemical Engineering & Technology, 2010, 33(9):1495-1505.
[9] LIRA-BARRAGÁN L F, PONCE-ORTEGA J M, SERNA-GONZÁLEZ M, et al. Synthesis of integrated absorption refrigeration systems involving economic and envi-ronmental objectives and quantifying social benefits[J]. Applied Thermal Engineering, 2013, 52(2):402-419.
[10] PONCE-ORTEGA J M, TORA E A, GONZÁLEZ-CAMPOS J B, et al. Integration of renewable energy with industrial absorption refrigeration systems:Systematic design and operation with technical, economic, and environmental objectives[J]. Industrial & Engineering Chemistry Research, 2011, 50(16):9667-9684.
[11] LIRA-BARRAGÁN L F, PONCE-ORTEGA J M, SERNA-GONZÁLEZ M, et al. Optimum heat storage design for solar-driven absorption refrigerators integrated with heat exchanger networks[J]. AIChE Journal, 2014, 60(3):909-930.
[12] SUN X J, LIU L L, DONG Y C, et al. Superstructure-based simultaneous optimization of a heat exchanger network and a compression-absorption cascade refrigeration system for heat recovery[J]. Industrial & Engineering Chemistry Research, 2020, 59(36):16017-16028.
[13] OLULEYE G, JOBSON M, SMITH R, et al. Evaluating the potential of process sites for waste heat recovery[J]. Applied Energy, 2016, 161:627-646.
[14] HIPÓLITO-VALENCIA B J, LIRA-BARRAGÁN L F, PONCE-ORTEGA J M, et al. Multiobjective design of interplant trigeneration systems[J]. AIChE Journal, 2014, 60(1):213-236.
[15] CHAN W M, LEONG Y T, FOO J J, et al. Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system[J]. Energy, 2017, 141:1555-1568.
[16] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration-Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10):1165-1184.
[17] XU Y J, JIANG N, PAN F, et al. Comparative study on two low-grade heat driven absorption-compression refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses[J]. Energy Conversion and Management, 2017, 133:535-547.
[18] KHALJANI M, SARAY R K, BAHLOULI K. Comprehensive analysis of energy, exergy and exergo-economic of coge neration of heat and power in a combined gas turbine and organic rankine cycle[J]. Energy Conversion and Management, 2015, 97:154-165.
[19] RICHARD E R. GAMS:A user's guide[M]. WEI C J, WANG H, trans. Beijing:China Water & Power Press, 2009. (in Chinese)理查德. GAMS用户指南[M]. 魏传江, 王浩, 译. 北京:中国水利水电出版社, 2009.
[20] LÓPEZ-MALDONADO L A, PONCE-ORTEGA J M, SEGOVIA-HERNÁNDEZ J G. Multiobjective synthesis of heat exchanger networks minimizing the total annual cost and the environmental impact[J]. Applied Thermal Engineering, 2011, 31(6-7):1099-1113.
[21] JING R, WANG M, ZHANG Z H, et al. Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties[J]. Applied Energy, 2019, 252:113424.
[1] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[2] 王斌, 张继文, 吴丹. 基于机器人建模的航空装配测控仿真分析方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 724-737.
[3] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[4] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[5] 张琳, 王金玉, 王鑫, 王伟, 曲立. 重大自然灾害下多灾害点应急物资智能调度优化[J]. 清华大学学报(自然科学版), 2023, 63(5): 765-774.
[6] 余志健, 杨倩雯, 王译晨, 杨东, 朱民. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报(自然科学版), 2023, 63(4): 487-504.
[7] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[8] 臧金蕊, 焦朋朋, 宋国华, 王天实, 王健宇. 基于机动车比功率分布的生态驾驶评价与轨迹优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1760-1769.
[9] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[10] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[11] 吴青建, 吴宏宇, 江智宏, 杨运强, 阎绍泽, 谭莉杰. 面向水下定点探测的水下滑翔机控制参数优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 62-70.
[12] 于雪菲, 张帅, 刘琳琳, 都健. 基于信息间隙决策理论的碳捕集电厂调度[J]. 清华大学学报(自然科学版), 2022, 62(9): 1467-1473.
[13] 张明, 王恩志, 刘耀儒, 齐文彪, 王德辉. 利用多项式混沌展开的结构可靠性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1314-1320.
[14] 郇宁, 姚恩建. 城际组合出行行为建模及应用研究进展[J]. 清华大学学报(自然科学版), 2022, 62(7): 1112-1120.
[15] 林建新, 林孟婷, 王皖东, 张智旋. 分级设施选址问题研究进展与展望[J]. 清华大学学报(自然科学版), 2022, 62(7): 1121-1131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn