Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 33-42    DOI: 10.16511/j.cnki.qhdxxb.2021.25.010
  专题:防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
典型变电站阻燃低压电缆外护套材料火灾条件下热解固气产物特性及反应机理
张佳庆1, 过羿1, 冯瑞2, 李开源3, 黄玉彪1, 尚峰举1
1. 国网安徽省电力有限公司电力科学研究院, 国家电网公司输变电设施火灾防护实验室, 电力火灾与安全防护安徽省重点实验室, 合肥 230601;
2. 清华大学 能源与动力工程系, 北京 100084;
3. 武汉理工大学 安全科学与应急管理学院, 武汉 430070
Solid-gas products and reaction mechanism of pyrolysis of the sheath material of a typical flame-retardant low-voltage cable in substations during a fire
ZHANG Jiaqing1, GUO Yi1, FENG Rui2, LI Kaiyuan3, HUANG Yubiao1, SHANG Fengju1
1. State Grid Anhui Electric Power Research Institute, State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities, Anhui Province Key Laboratory of Electric Fire and Safety Protection, Hefei 230601, China;
2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
3. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(5050 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 变电站作为电力系统的核心部分,一旦发生火灾将可能造成严重的后果,研究变电站电缆的热解反应机理具有重要的现实意义。目前,针对变电站电缆热解机理,特别是元素变化规律和气体产物定量的研究较少。该文针对典型变电站阻燃低压电力电缆(ZRB-VV22-0.6/1.0 kV型)的外护套材料开展无氧条件下的热解动力学、固气产物特性及反应机理研究。利用热重实验(thermogravimetric,TG)研究外护套在氮气气氛下的热解行为,发现其热解主要分为2个阶段,应用Friedman、FWO和KAS方法,计算得到活化能分别为145.17和241.71 kJ/mol。采用场扫描电镜和X射线能谱仪联用技术(EDS)对原料和热解残碳进行元素分析,发现热解导致C元素挥发,其质量占比在热解后明显降低;Ca、Mg、Si元素无法挥发,以氧化物或其他化合物的形式保留在残碳中,质量占比明显升高;Cl和O元素部分挥发,质量占比有所升高,其中Cl元素的挥发可推断产物中存在HCl。进而,利用热裂解-气相色谱质谱联用(Py-GC/MS)对该电缆外护套的挥发性产物进行定性定量分析,发现其热解第一阶段(<623 K)产物以HCl和苯为主,当热裂解温度上升到773 K时产物中出现多环芳烃及苯系物,其热解过程以内部聚氯乙烯(PVC)材料受热分解为主,主体产物与PVC热解类似,用内标法对HCl、苯及苯系物进行定量,得到HCl和苯的产率分别为0.077和0.266 g/g,其余苯系物的产率较低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳庆
过羿
冯瑞
李开源
黄玉彪
尚峰举
关键词 火灾电缆外护套热重分析(TG)元素扫描热裂解-气相色谱质谱联用(Py-GC/MS)    
Abstract:Substations are key power system components, so substation fires can have serious consequences on system operations. In particular, more research is needed on the pyrolysis mechanism of cables in substations. There is little research on the chemical reactions and the gas products produced during pyrolysis of substation cables. The current study analyzed the pyrolysis kinetics, solid-gas product characteristics and reaction mechanism of the sheath material of a typical flame-retardant low-voltage power cable (type ZRB-VV22-0.6/1.0 kV) in a substation in the absence of oxygen. Thermogravimetric (TG) experiments were used to investigate the pyrolysis of the sheath material in a nitrogen atmosphere. The experiments showed that the pyrolysis can be divided into two major stages with activation energies of 145.17 and 241.71 kJ/mol for the two stages based on the Friedman, FWO and KAS methods. A field scanning electron microscope and an X-ray energy spectrometer (EDS) were used to analyze the elemental mass fractions of the raw material before pyrolysis and the residue after pyrolysis. The carbon mass fraction decreased due to volatilization of the carbon in the sheath. Ca, Mg and Si were not volatilized but remained in the residue with significantly greater mass fractions. Cl and O were partially volatilized with somewhat higher mass fractions in the residue. The volatilization of Cl infers the existence of HCl in the gas products. The use of Py-GC/MS to quantify the volatile products showed that the products of the first pyrolysis stage (<623 K) are mainly HCl and benzene. When the pyrolysis temperature rises up to 773 K, the products contain polycyclic aromatic hydrocarbons and benzene series. The main pyrolysis process is attributed to the pyrolysis of the PVC in the sheath material. Therefore, the main products are similar to PVC pyrolysis. The HCl yield was 0.077 g/g and the benzene yield was 0.266 g/g while the benzene series yields were relatively low.
Key wordsfire    cable sheath    thermogravimetric analysis    element scanning    pyrolysis gas chrogams-mass spectrometry (Py-GC/MS)
收稿日期: 2020-11-30      出版日期: 2022-01-14
基金资助:国家电网有限公司总部科技项目(5213042000P);国家自然科学基金项目(51876148)
引用本文:   
张佳庆, 过羿, 冯瑞, 李开源, 黄玉彪, 尚峰举. 典型变电站阻燃低压电缆外护套材料火灾条件下热解固气产物特性及反应机理[J]. 清华大学学报(自然科学版), 2022, 62(1): 33-42.
ZHANG Jiaqing, GUO Yi, FENG Rui, LI Kaiyuan, HUANG Yubiao, SHANG Fengju. Solid-gas products and reaction mechanism of pyrolysis of the sheath material of a typical flame-retardant low-voltage cable in substations during a fire. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 33-42.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.010  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/33
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] REN S J, SUN Q H. The law of insulation failure of ZR-VV cables under the circumstances of different thermal environments[J]. Procedia Engineering, 2016, 135:363-368.
[2] COURTY L, GARO J P. External heating of electrical cables and auto-ignition investigation[J]. Journal of Hazardous Materials, 2017, 321:528-536.
[3] WITKOWSKI A, GIRARDIN B, FÖRSTH M, et al. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials[J]. Polymer Degradation and Stability, 2015, 113:208-217.
[4] SURESH S S, MOHANTY S, NAYAK S K. Composition analysis and characterization of waste polyvinyl chloride (PVC) recovered from data cables[J]. Waste Management, 2017, 60:100-111.
[5] 林月娟, 徐严平, 陈耀文. 低真空条件下SEM/EDS对激光打印文字墨粉的鉴别[J]. 汕头大学学报(自然科学版), 2010, 25(4):75-80. LIN Y J, XU Y P, CHEN Y W. Identification of laser printer toners with SEM/EDS under the low vacuum level condition[J]. Journal of Shantou University (Natural Science), 2010, 25(4):75-80. (in Chinese)
[6] SUN W, YOU F, LI P, et al. Pyrolysis properties and kinetics of typical liquid oils in wind turbine nacelle[J]. Procedia Engineering, 2018, 211:668-673.
[7] MATALA A, HOSTIKKA S. Pyrolysis modelling of PVC cable materials[J]. Fire Safety Science-Proceedings of the Tenth International Symposium, 2011, 10:917-930.
[8] WANG C J, LIU H R, ZHANG J Q, et al. Thermal degradation of flame-retarded high-voltage cable sheath and insulation via TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134:167-175.
[9] WANG Z, WANG J. Comparative thermal decomposition characteristics and fire behaviors of commercial cables[J]. Journal of Thermal Analysis and Calorimetry, 2020. DOI:10.1007/s10973-020-10051-z.
[10] MUN S Y, HWANG C H. Experimental and numerical studies on major pyrolysis properties of flame retardant PVC cables composed of multiple materials[J]. Materials (Basel), 2020, 13(7):1712.
[11] MA W C, RAJPUT G, PAN M H, et al. Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR[J]. Fuel, 2019, 251:693-708.
[12] ZHOU J J, LIU G J, WANG S B, et al. TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Journal of the Energy Institute, 2020, 93(6):2362-2370.
[13] MIRANDA R, YANG J, ROU C, et al. Vacuum pyrolysis of PVC I. Kinetic study[J]. Polymer Degradation and Stability, 1999, 64(1):127-144.
[14] 王强, 王静, 曹亚丽, 等. 气相色谱-质谱法研究聚氯乙烯的热裂解行为[J]. 塑料科技, 2012, 40(5):93-95. WANG Q, WANG J, CAO Y L, et al. Research on the thermal pyrolytic behaviour of PVC through pyrolysis-gas chromatography-mass spectrometry[J]. Plastics Science and Technology, 2012, 40(5):93-95. (in Chinese)
[15] 马燕, 王强, 高晶, 等. 裂解气相色谱-质谱法研究聚氯乙烯树脂的热降解[J]. 化学试剂, 2009, 31(11):910-912. MA Y, WANG Q, GAO J, et al. Study on thermal decomposition of PVC by pyrolysis GC/MS[J]. Chemical Reagents, 2009, 31(11):910-912. (in Chinese)
[16] 郭子东. 典型核电电缆火灾危险性的热解实验研究[J]. 消防科学与技术, 2018, 37(5):602-604, 632. GUO Z D. Pyrolysis experiment of fire hazard of a typical nuclear power cable[J]. Fire Science and Technology, 2018, 37(5):602-604, 632. (in Chinese)
[17] CHEN R Y, LU S X, ZHANG Y, et al. Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis[J]. Energy Conversion and Management, 2017, 153:83-92.
[18] FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic[J]. Journal of Polymer Science Part C:Polymer Symposia, 1964, 6(1):183-195.
[19] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[20] FLYNN J H. The isoconversional method for determination of energy of activation at constant heating rates corrections for the doyle approximation[J]. Journal of Thermal Analysis, 1983, 27(1):95-102.
[21] LIM A C R, CHIN B L F, JAWAD Z A, et al. Kinetic analysis of rice husk pyrolysis using kissinger-akahira-sunose (KAS) method[J]. Procedia Engineering, 2016, 148:1247-1251.
[22] KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57(4):217-221.
[23] MA Z Q, CHEN D Y, GU J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Conversion and Management, 2015, 89:251-259.
[24] 李苗, 康洁, 王晓玢, 等. N-十六烷基马来酰胺酸根合镧(Ⅲ)对聚氯乙烯的热稳定机理[J]. 高分子材料科学与工程, 2019, 35(11):88-100, 108. LI M, KANG J, WANG X F, et al. Heat stabilizing mechanism of complexes of lanthanum (Ⅲ) with N-hexadecyl maleamic acid radical for polyvinyl chloride[J]. Polymer Materials Science & Engineering, 2019, 35(11):88-100, 108. (in Chinese)
[25] 孙庆雷, 时新刚, 林云良, 等. 聚氯乙烯的热解特性和热解动力学研究[J]. 燃料化学学报, 2007, 35(4):497-500. SUN Q L, SHI X G, LIN Y L, et al. Pyrolysis of polyvinyl chloride and its kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4):497-500. (in Chinese)
[26] 赵艳萍, 刘申友, 张和平, 等. 聚氯乙烯电缆绝缘材料热解机理与动力学参数研究[J]. 消防科学与技术, 2012, 31(4):329-332. ZHAO Y P, LIU S Y, ZHANG H P, et al. Thermal decomposition mechanism and kinetics parameters of the polyvinyl chloride cable insulation material[J]. Fire Science and Technology, 2012, 31(4):329-332. (in Chinese)
[27] 韩斌, 吴玉龙, 封伟, 等. 聚氯乙烯热解动力学的研究[C]//第六届全国环境催化与环境材料学术会议论文集. 成都, 中国:中国化学会, 2009:124-125. HAN B, WU Y L, FENG W, et al. Study on the kinetics of pyrolysis of PVC[C]//Proceedings of the 6th National Conference on Environmental Catalysis and Environmental Materials. Chengdu, China:Chinese Chemical Society, 2009:124-125. (in Chinese)
[1] 贺胜, 疏学明, 胡俊, 张雷, 张伽, 张嘉乐, 周扬. 基于消防大数据的电气火灾风险预测预警方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 478-491.
[2] 赵金龙, 李浩源, 张清元, 杨钧晖, 田畅, 疏学明. 用于液体火灾的环保泡沫制备方法与关键参数[J]. 清华大学学报(自然科学版), 2024, 64(3): 502-508.
[3] 贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
[4] 田逢时, 孙占辉, 郑昕, 尹燕福. 城市消防警情的空间异质性及影响因素[J]. 清华大学学报(自然科学版), 2023, 63(6): 888-899.
[5] 李开远, 袁宏永, 陈涛, 黄丽达. 基于TDLAS的光学探针式初期火灾探测系统[J]. 清华大学学报(自然科学版), 2023, 63(6): 910-916.
[6] 岳顺禹, 龙增, 仇培云, 钟茂华, 华福才. 独头隧道火灾全尺寸实验研究[J]. 清华大学学报(自然科学版), 2023, 63(6): 917-925.
[7] 姜文宇, 王飞, 苏国锋, 乔禹铭, 李鑫, 权威. 基于元胞自动机的以火灭火动态建模方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 926-933.
[8] 胡俊, 疏学明, 解学才, 颜峻, 张雷. 基于定量风险评估的建筑火灾保险费率[J]. 清华大学学报(自然科学版), 2023, 63(5): 775-782.
[9] 刘智远, 李行, 周汛. 送风环境下地铁车厢火灾温度分布[J]. 清华大学学报(自然科学版), 2023, 63(10): 1529-1536.
[10] 孙潇潇, 黄弘, 赵金龙, 章翔, 宋广恒. 有坡度下点源持续泄漏溢油流淌火扩散特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 994-999.
[11] 张晶, 陈涛, 黄丽达, 苏国锋, 孙占辉, 陈建国. 接触不良引发发光连接的动态变化[J]. 清华大学学报(自然科学版), 2022, 62(6): 1000-1009.
[12] 王冠宁, 陈涛, 米文忠, 梁晓良, 王汝栋. 基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 277-284.
[13] 陈俊沣, 程辉航, 魏旋, 温亲玮, 吴乐, 刘畅, 钟茂华. 隧道火灾全尺寸实验中温度测量误差[J]. 清华大学学报(自然科学版), 2022, 62(10): 1618-1625.
[14] 刘畅, 钟茂华, 林鹏, 龚远平, 田向亮, 阴彬, 龙增, 杨宇轩. 水利水电工程分岔型隧道全尺寸火灾实验研究[J]. 清华大学学报(自然科学版), 2022, 62(1): 1-12.
[15] 田逢时, 薛冉, 郑昕, 康青春. 超大型油罐火灾分区灭火方案及实验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn