Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 367-373    DOI: 10.16511/j.cnki.qhdxxb.2021.25.011
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
焊接热源参数优化方法研究及验证
张红卫, 桂良进, 范子杰
清华大学 车辆与运载学院, 汽车安全与节能国家重点实验室, 北京 100084
Research and verification of welding heat source parameter optimization model
ZHANG Hongwei, GUI Liangjin, FAN Zijie
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(7323 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 焊接过程温度场的准确计算,对焊接残余应力及变形分析起着决定性作用。焊接热源中的形状参数直接决定焊接温度场的分布,而热源形状参数的确定一般需要根据实际焊缝形状使用试算法反复调整,效率和精度对研究人员的经验依赖性强。该文提出了一种热源形状参数优化模型,可用于各类热源形状参数的估计。使用多软件协同计算的方法,实现对优化模型的求解。通过对试验案例进行有限元模拟,与试验结果进行了对比验证。结果表明,基于该文提出的热源形状参数优化方法,可减少重复建模的工作量,并得到最优的热源参数,降低了焊接温度场模拟的效率与精度对研究人员经验的依赖性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张红卫
桂良进
范子杰
关键词 焊接热分析热源参数优化模型有限元分析    
Abstract:Accurate simulations of the temperature field during welding are important for analyzing welding residual stresses and material deformation. The welding temperature field is directly related to the shape parameters of the heat source. However, the heat source shape parameter determination is generally a trial and error process with the efficiency and accuracy highly dependent on the researcher experience. This paper presents an optimization model for determining the heat source parameters during welding which can be used to estimate the shape parameters of various heat sources. Finite element simulations with the optimized parameters compared well with experimental data. The results show that this optimization method reduces the cost of repeated modeling to obtain the optimal heat source parameters, which also reduces the influence of the researchers' experience on the efficiency and accuracy of welding temperature simulations.
Key wordswelding thermal analysis    heat source parameters    optimization model    finite element analysis
收稿日期: 2020-12-18      出版日期: 2022-01-22
基金资助:清华大学校企合作项目(20182000006)
通讯作者: 范子杰,教授,E-mail:zjfan@tsinghua.edu.cn      E-mail: zjfan@tsinghua.edu.cn
作者简介: 张红卫(1991-),男,博士研究生
引用本文:   
张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版), 2022, 62(2): 367-373.
ZHANG Hongwei, GUI Liangjin, FAN Zijie. Research and verification of welding heat source parameter optimization model. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 367-373.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.011  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/367
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] DENG D, MURAKAWA H. Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects[J]. Computational Materials Science, 2006, 37(3):209-219.
[2] DENG D, MURAKAWA H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel[J]. Computational Materials Science, 2013, 78:55-62.
[3] ZHANG H W, GUI L J, WANG Q, et al. Investigation of residual stress in butt-welded plates considering phase transformation[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021.
[4] ZHANG J X, LIU C. Finite element calculation of welding stress and deformation and engineering application[M]. Beijing:Science Press, 2017. (in Chinese)张建勋, 刘川. 焊接应力变形有限元计算及其工程应用[M]. 北京:科学出版社, 2017.
[5] GOLDAK J A, AKHLAGHI M. Computational welding mechanics[M]. New York:Springer Verlag, 2005.
[6] WEI L, ZHANG L L, WANG P. Numerical simulation on welding process of high-speed train's frame structure based on double elliptical cylinder Gaussian distribution heat source model[J]. Transactions of the China Welding Institution, 2016, 37(12):95-100, 133. (in Chinese)卫亮, 张乐乐, 王鹏. 高速列车框架焊接的双椭圆柱高斯分布热源模型[J]. 焊接学报, 2016, 37(12):95-100, 133.
[7] WANG Y, ZHAO H Y, WU S, et al. Shape parameter determination of double ellipsoid heat source model in numerical simulation of high energy beam welding[J]. Transactions of the China Welding Institution, 2003, 24(2):67-70. (in Chinese)王煜, 赵海燕, 吴甦, 等. 高能束焊接双椭球热源模型参数的确定[J]. 焊接学报, 2003, 24(2):67-70.
[8] GUO X K. Inversing parameter values of double ellipsoid source model during multiple wires submerged arc welding by using Pattern Search Method[D]. Shanghai:Shanghai Jiao Tong University, 2009. (in Chinese)郭晓凯. 模式搜索法反演多丝埋弧焊双椭球热源模型参数[D]. 上海:上海交通大学, 2009.
[9] LI P L. Study on the simulation of multi-wire submerged arc welding heat source model and appearance of weld[D]. Shanghai:Shanghai Jiao Tong University, 2012. (in Chinese)李培麟. 多丝埋弧焊热源模型与焊缝成形的模拟研究[D]. 上海:上海交通大学, 2012.
[10] JIA X L, XU J, LIU Z H, et al. A new method to estimate heat source parameters in gas metal arc welding simulation process[J]. Fusion Engineering and Design, 2014, 89(1):40-48.
[11] FICQUET X, SMITH D J, TRUMAN C E, et al. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen[J]. International Journal of Pressure Vessels and International Journal of Pressure Vessels and Piping, 2009, 86(1):20-30.
[12] SHAN X, DAVIES C M, WANGSDAN T, et al. Thermo-mechanical modelling of a single-bead-on-plate weld using the finite element method[J]. International Journal of Pressure Vessels and Piping, 2009, 86(1):110-121.
[13] GOLDAK J A, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2):299-305.
[14] LINDGREN L E. Finite element modeling and simulation of welding part 1:Increased complexity[J]. Journal of Thermal Stresses, 2001, 24(2):141-192.
[15] LINDGREN L E. Finite element modeling and simulation of welding. Part 2:Improved material modeling[J]. Journal of Thermal Stresses, 2001, 24(3):195-231.
[16] GARCÍA-GARCÍA V, CAMACHO-ARRIAGA J C, REYES-CALDERÓN F. A simplified elliptic paraboloid heat source model for autogenous GTAW process[J]. International Journal of Heat and Mass Transfer, 2016, 100:536-549.
[17] AARBOGH H M, HAMIDE M, FJAER H G, et al. Experimental validation of finite element codes for welding deformations[J]. Journal of Materials Processing Technology, 2010, 210(13):1681-1689.
[1] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[2] 张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
[3] 吕江伟, 周凯. 高力密度直线开关磁阻电机的最佳极宽比[J]. 清华大学学报(自然科学版), 2018, 58(5): 469-476.
[4] 赵海燕, 吴骏巍, 陆向明, 简波, 李宏伟. 基于局部-整体有限元法的薄壁筒焊接变形计算[J]. 清华大学学报(自然科学版), 2017, 57(5): 449-453.
[5] 刘赛, 吕振华. 扁长杆的冲击弹塑性屈曲特性分析的仿真有限元模型[J]. 清华大学学报(自然科学版), 2016, 56(10): 1104-1108.
[6] 李克俭, 蔡志鹏, 李轶非, 胡梦佳, 潘际銮. 长期高温时效对有碳迁移发生的焊接接头的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1051-1055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn