Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 778-791    DOI: 10.16511/j.cnki.qhdxxb.2021.25.017
  试验研究 本期目录 | 过刊浏览 | 高级检索 |
岩石破裂过程中裂隙流体X射线造影试验及应用
孙欢1,2, 刘晓丽2, 王恩志2, 张建民2, 王思敬2, 刘驰2
1. 海南大学 土木建筑工程学院, 海口 570228;
2. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
X-ray radiography for visualization of fissure fluid flows during rock failures
SUN Huan1,2, LIU Xiaoli2, WANG Enzhi2, ZHANG Jianmin2, WANG Sijing2, LIU Chi2
1. College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(37321 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 裂隙流体是水岩系统工程灾变的主要影响因素,直观可视化岩石破坏与裂隙流体的相互作用过程,是揭示不同工程背景条件下水岩互馈灾变机理的关键。该文提出了岩石破裂过程中裂隙流体X射线造影方法,开展了岩溶滑坡、红层边坡失稳及煤矿采空区涌水灾害背景下的岩石材料尺度试验。试验研究结果表明:岩溶管道-裂隙流过渡过程中流态经历了从层流到过渡流或紊流的演化过程,多级应力荷载作用下碳酸盐岩管道流体至裂隙流体的变化过程具有分形演化特征。水动力循环和多级应力荷载作用下红层泥岩损伤因子呈非线性增长,采取控制或降低渗流扩散系数的加固措施可有效治理或调控红层边坡灾害。煤岩破裂过程中裂隙水均方根流量具有分数指数演化规律,裂隙水演化经历了超-扩散流动向亚-扩散流动的变化过程,得出开采扰动作用下煤岩裂隙水的非线性流动和异常扩散现象是诱发采空区突涌水灾害的本质原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙欢
刘晓丽
王恩志
张建民
王思敬
刘驰
关键词 裂隙流X射线影像管道破裂渗流扩散均方根流量    
Abstract:Fissure fluids can induce engineering hazards due to interactions between the fluid and the rock. Further research is needed to describe the induced hazards mechanism for fluid and rock interactions by observing fissure fluid flows during rock failures. This study used X-ray imaging to observe fissure fluid flows in rocks during failures. This work studied Karst landslides, slope instabilities in the rock bed mudstone (RBM) area and water bursting into the goaf. The results show that the laminar flows change to transitional or turbulent flows in the rocks during pipe rupture into the fissures. This process shows the fractal characteristics of pipe flows evolving with the fissure flows during Karst rock failures with multilevel stress loadings. Also, the RBM damage parameters increase non-linearly as the rock fails due to the coupled effects of the fluid dynamics and the multilevel stress loadings. This indicates that seepage control and diffusion can reduce and prevent landslides in the RBM area. The mean square fissure water flow rates also show fractional evolution during coal and rock failures, with the flow regime changing from sup-diffusion flow to sub-diffusion flow. The non-linear flow characteristics and anomalous diffusion of fissure water are key reasons for water bursting hazards during coal seam mining.
Key wordsfissure fluids    X-ray radiography    pipe rapture    seepage diffusion    mean square flow rate
收稿日期: 2021-01-20      出版日期: 2021-07-14
基金资助:刘晓丽,副教授,E-mail:xiaoli.liu@tsinghua.edu.cn
引用本文:   
孙欢, 刘晓丽, 王恩志, 张建民, 王思敬, 刘驰. 岩石破裂过程中裂隙流体X射线造影试验及应用[J]. 清华大学学报(自然科学版), 2021, 61(8): 778-791.
SUN Huan, LIU Xiaoli, WANG Enzhi, ZHANG Jianmin, WANG Sijing, LIU Chi. X-ray radiography for visualization of fissure fluid flows during rock failures. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 778-791.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.017  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I8/778
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 樊启祥, 林鹏, 蒋树, 等. 金沙江下游大型水电站岩石力学与工程综述[J]. 清华大学学报(自然科学版), 2020, 60(7):537-556. FAN Q X, LIN P, JIANG S, et al. Review on the rock mechanics and engineering practice for large hydropower stations along the downstream section of the Jinsha River[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(7):537-556. (in Chinese)
[2] 李滨, 殷跃平, 高杨, 等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质, 2020, 47(4):5-13. LI B, YIN Y P, GAO Y, et al. Critical issues in rock avalanches in the Karst mountain areas of southwest China[J]. Hydrogeology and Engineering Geology, 2020, 47(4):5-13. (in Chinese)
[3] WU Q, WANG M, WU X. Investigations of groundwater bursting into coal mine seam floors from fault zones[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4):557-571.
[4] 马贤杰, 张玉芳, 侯李杰, 等. 红层地区滑坡的分类及形成机制[J]. 铁道建筑, 2020:1-5. MA X J, ZHANG Y F, HOU L J, et al. Study on the stability analysis and treatment of the red beds rock slope of the dip structure[J]. Railway Engineering, 2020:1-5. (in Chinese)
[5] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11):2161-2178. XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11):2161-2178. (in Chinese)
[6] 鞠杨, 张钦刚, 杨永明, 等. 岩体粗糙单裂隙流体渗流机制的实验研究[J]. 中国科学:技术科学, 2013, 43(10):1144-1154. JU Y, ZHANG Q G, YANG Y M, et al. An experimental investigation on the mechanism of fluid flow through single rough fracture of rock[J]. Science China Technological Sciences, 2013, 56(8):2070-2080. (in Chinese)
[7] 刘晓丽, 王恩志, 王思敬, 等. 裂隙岩体表征方法及岩体水力学特性研究[J]. 岩石力学与工程学报, 2008, 27(9):1814-1821. LIU X L, WANG E Z, WANG S J, et al. Representation method of fractured rock mass and its hydraulic properties study[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1814-1821. (in Chinese)
[8] 王恩志. 岩体裂隙的网络分析及渗流模型[J]. 岩石力学与工程学报, 1993, 12(3):214-221. WANG E Z. Network analysis and seepage flow model of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3):214-221. (in Chinese)
[9] 王恩志, 张文韶, 韩小妹, 等. 低渗透岩石在围压作用下的耦合渗流实验[J]. 清华大学学报(自然科学版), 2005, 45(6):764-767. WANG E Z, ZHANG W S, HAN X M, et al. Experimental study on coupled flow through low permeability rock under confining pressure[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(6):764-767. (in Chinese)
[10] ZIMMERMAN R W, BODVARSSON G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1):1-30.
[11] CHECHKIN A V, GORENFLO R, SOKOLOV I M. Fractional diffusion in inhomogeneous media[J]. Journal of Physics A:Mathematical and General, 2005, 38(42):L679.
[12] RAGHAVAN R. Fractional derivatives:Application to transient flow[J]. Journal of Petroleum Science and Engineering, 2011, 80(1):7-13.
[13] MUHAMMAD S. Flow phenomena in rocks:From continuum models to fractals, percolation, cellular automata, and simulated annealing[J]. Reviews of Modern Physics, 1993, 65(4):1393-1534.
[14] HIRONO T, TAKAHASHI M, NAKASHIMA S. In situ visualization of fluid flow image within deformed rock by X-ray CT[J]. Engineering Geology, 2003, 70(1-2):37-46.
[15] 孙欢. 采动煤岩应力-裂隙-渗流耦合机理研究及应用[D]. 西安:西安科技大学, 2017. SUN H. Research on coupling mechanism and application of stress-fracture-seepage in excavation coal-rock[D]. Xi'an:Xi'an University of Science and Technology, 2017. (in Chinese)
[16] 孙欢, 来兴平, 单鹏飞, 等. 配套于X-光机扫描的连续加载岩石力学装置:201520398253. 9[P]. 2015-09-23. SUN H, LAI X P, SHAN P F, et al. A continuous loading device matching X-ray scanning for rock mechanics testing:201520398253. 9[P]. 2015-09-23. (in Chinese)
[17] SUN H, LIU X L, ZHU J B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117:1-10.
[18] 杨忠平, 蒋源文, 李滨, 等. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报, 2020, 26(4):459-470. YANG Z P, JIANG Y W, LI B, et al. Study on the mechanism of deep and large fracture propagation and transfixion in Karst slope under the action of mining[J]. Journal of Geomechanics, 2020, 26(4):459-470. (in Chinese)
[19] SUN H, LIU X L, YE Z N, et al. Experimental investigation of the nonlinear evolution from pipe flow to fissure flow during carbonate rock failures[J]. Bulletin of Engineering Geology and the Environment, 2021. Doi:https://doi.org/10.1007/s10064-021-02210-9.
[20] 唐海, 易帅, 袁超, 等. 砂岩加载过程中的细观损伤试验研究[J]. 岩石力学与工程学报, 2019, 38(3):487-498. TANG H, YI S, YUAN C, et al. Experimental study on meso-damage of sandstone during loading process[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3):487-498. (in Chinese)
[21] 孙欢, 刘晓丽, 王恩志, 等. 基于X射线断层扫描预测岩石单轴抗压强度[J]. 岩石力学与工程学报, 2019, 38(S2):3575-3582. SUN H, LIU X L, WANG E Z, et al. Prediction on uniaxial compression strength of rocks with X-ray computed tomography[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2):3575-3582. (in Chinese)
[22] SUN H, LIU X L, ZHANG S G, et al. Experimental investigation of acoustic emission and infrared radiation thermography of dynamic fracturing process of hard-rock pillar in extremely steep and thick coal seams[J]. Engineering Fracture Mechanics, 2020, 226:106845.
[23] DOS SANTOS M A F. Analytic approaches of the anomalous diffusion:A review[J]. Chaos, Solitons & Fractals, 2019, 124:86-96.
[24] ZHANG Y, CHEN Y L, YU R G, et al. Effect of loading rate on the felicity effect of three rock types[J]. Rock Mechanics and Rock Engineering, 2017, 50(6):1673-1681.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn