Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 873-880    DOI: 10.16511/j.cnki.qhdxxb.2021.25.020
  工程应用 本期目录 | 过刊浏览 | 高级检索 |
地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响
宋丹青, 黄进, 刘晓丽, 王恩志
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Influence of the rock mass structure and lithology on the dynamic response characteristics of steep rock slopes during earthquakes
SONG Danqing, HUANG Jin, LIU Xiaoli, WANG Enzhi
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(22792 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为研究岩体结构及岩性对高陡岩质边坡地震响应特征的影响,该文建立了均质软/硬岩边坡、层状软/硬岩边坡4个数值模型,采用有限元方法进行动力分析。通过分析边坡的动力加速度放大系数(MPGA),研究岩体结构及岩性对坡内波传播特征及其动力放大效应的影响。研究结果表明:岩体结构及岩性对坡内的波传播特征具有影响,软弱夹层使波在地震坡内出现了局部放大效应;相同条件下软岩边坡的动力放大效应大于硬岩边坡,与岩体结构相比岩性对边坡动力响应影响更显著,与均质边坡相比岩性对层状边坡的地震放大效应影响更大,均质软岩与均质硬岩边坡的MPGA比值小于层状软岩与层状硬岩边坡的MPGA比值;软硬岩边坡均表现出一定的高程及趋表放大效应,与均质边坡相比层状边坡的高程放大效应具有明显的非线性变化特征;软弱夹层对边坡的动力放大效应具有影响,层状边坡的动力放大效应大于均质边坡。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋丹青
黄进
刘晓丽
王恩志
关键词 岩体结构岩性高陡岩质边坡动力响应地震    
Abstract:Numerical models were used to study the influence of the rock mass structure and lithology on the seismic response characteristics of steep rock slopes for homogeneous soft/hard rock slopes and layered soft/hard rock slopes. The dynamic analyses used the finite element method. The predictions gave the dynamic acceleration amplification coefficient (MPGA) of the slopes that characterized the influence of the rock structure and lithology on the wave propagation characteristics and the amplification effect. The results show that the rock structure and the lithology influence the wave propagation characteristics in the slopes with weak interlayer interactions leading to local amplification of the seismic waves in the slopes. The dynamic amplification effect is greater for soft rock slopes than for hard rock slopes. The lithology has more effect on the dynamic response of the slopes than the rock structure. The lithology also more greatly influences the seismic amplification of layered slopes than homogeneous slopes. The MPGA ratios of homogeneous soft rock and homogeneous hard rock slopes are smaller than those of layered soft rock and layered hard rock slopes. The soft and hard rock slopes also show elevation and trend magnification effects. The elevation amplification effect of the layered slopes does not vary linearly as with homogeneous slopes. The weak interlayer interactions impact the slope amplification effect while the dynamic magnification effect of layered slopes with weak interlayer interactions is larger than for homogeneous slopes.
Key wordsrock mass structure    lithology    high-steep rock slope    dynamic response    earthquake
收稿日期: 2021-02-17      出版日期: 2021-07-14
基金资助:刘晓丽,副教授,E-mail:xiaoli.liu@tsinghua.edu.cn
引用本文:   
宋丹青, 黄进, 刘晓丽, 王恩志. 地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响[J]. 清华大学学报(自然科学版), 2021, 61(8): 873-880.
SONG Danqing, HUANG Jin, LIU Xiaoli, WANG Enzhi. Influence of the rock mass structure and lithology on the dynamic response characteristics of steep rock slopes during earthquakes. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 873-880.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.020  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I8/873
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ZHOU J W, JIAO M Y, XING H G, et al. A reliability analysis method for rock slope controlled by weak structural surface[J]. Geosciences Journal, 2017, 21(3):453-467.
[2] CHE A L, YANG H K, WANG B, et al. Wave propagations through jointed rock masses and their effects on the stability of slopes[J]. Engineering Geology, 2016, 201:45-56.
[3] 林鹏, 刘晓丽, 胡昱, 等. 应力与渗流耦合作用下溪洛渡拱坝变形稳定分析[J]. 岩石力学与工程学报, 2013, 32(6):1145-1156. LIN P, LIU X L, HU Y, et al. Deformation stability analysis of Xiluodu arch dam under stress-seepage coupling condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6):1145-1156. (in Chinese)
[4] 胡波, 赵海滨, 王思敬, 等. 隧道锚围岩拉拔模型试验研究及数值模拟[J]. 岩土力学, 2009, 30(6):1575-1582. HU B, ZHAO H B, WANG S J, et al. Pull-out model test for tunnel anchorage and numerical analysis[J]. Rock and Soil Mechanics, 2009, 30(6):1575-1582. (in Chinese)
[5] LIU X L, HAN G F, WANG E Z, et al. Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4):694-702.
[6] LIU X L, WANG S J, WANG S Y, et al. Fluid-driven fractures in granular materials[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2):621-636.
[7] LIU H, XU Q, LI Y, et al. Response of high-strength rock slope to seismic waves in a shaking table test[J]. Bulletin of the Seismological Society of America, 2013, 103(6):3012-3025.
[8] 黄润秋, 李为乐. "5.12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12):2585-2592. HUANG R Q, LI W L. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12):2585-2592. (in Chinese)
[9] CHIGIRA M, WU X Y, INOKUCHI T, et al. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China[J]. Geomorphology, 2010, 118(3-4):225-238.
[10] 刘汉香, 许强, 侯红娟. 岩性及岩体结构对斜坡地震加速度响应的影响[J]. 岩土力学, 2013, 34(9):2482-2488. LIU H X, XU Q, HOU H J. Influence of lithology and rock structure on slope seismic acceleration responses[J]. Rock and Soil Mechanics, 2013, 34(9):2482-2488. (in Chinese)
[11] 邹威, 许强, 刘汉香, 等. 强震作用下层状岩质斜坡破坏的大型振动台试验研究[J]. 地震工程与工程振动, 2011, 31(4):143-149. ZOU W, XU Q, LU H X, et al. Large-scale shaking table model test study on failure of layered rocky slope under strong ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(4):143-149. (in Chinese)
[12] SONG D Q, CHE A L, ZHU R J, et al. Dynamic response characteristics of a rock slope with discontinuous joints under the combined action of earthquakes and rapid water drawdown[J]. Landslides, 2018, 15(6):1109-1125.
[13] SONG D Q, CHE A L, CHEN Z, et al. Seismic stability of a rock slope with discontinuities under rapid water drawdown and earthquakes in large-scale shaking table tests[J]. Engineering Geology, 2018, 245:153-168.
[14] SONG D Q, CHEN Z, KE Y T, et al. Seismic response analysis of a bedding rock slope based on the time-frequency joint analysis method:A case study from the middle reach of the Jinsha River, China[J]. Engineering Geology, 2020, 274:105731.
[15] LIU G W, SONG D Q, CHEN Z, et al. Dynamic response characteristics and failure mechanism of coal slopes with weak intercalated layers under blasting loads[J]. Advances in Civil Engineering, 2020, 2020:5412795.
[16] FAN G, ZHANG J J, WU J B, et al. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table[J]. Rock Mechanics and Rock Engineering, 2016, 49(8):3243-3256.
[17] HUANG J, LIU X L, ZHAO J, et al. Propagation of stress waves through fully saturated rock joint under undrained conditions and dynamic response characteristics of filling liquid[J]. Rock Mechanics and Rock Engineering, 2020, 53(8):3637-3655
[18] GOODMAN R E, BRAY J W. Toppling of rock slopes[C]//Proceedings of the Specialty Conference on Rock Engineering for Foundations and Slopes. 1976:201-234.
[19] KUMAR R, KAUR M. Reflection and refraction of plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures[J]. Archive of Applied Mechanics, 2014, 84(4):571-590.
[20] HUANG R Q, LI W L. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3):363-371.
[21] SONG D Q, CHEN Z, CHAO H, et al. Numerical study on seismic response of a rock slope with discontinuities based on the time-frequency joint analysis method[J]. Soil Dynamics and Earthquake Engineering, 2020, 133:106112.
[1] 侯本伟, 游丹, 范世杰, 许成顺, 钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估[J]. 清华大学学报(自然科学版), 2024, 64(3): 509-520.
[2] 张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
[3] 曹子龙, 黄杜若. 基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J]. 清华大学学报(自然科学版), 2022, 62(8): 1330-1340.
[4] 王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
[5] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[6] 杨剑锋, 展慧, 陈良超, 窦站. 考虑地震灾害的城市人员密集区域应急疏散路线规划[J]. 清华大学学报(自然科学版), 2022, 62(1): 70-76.
[7] 范乐, 王燕语, 张靖岩, 韦雅云. 基于安全韧性分析的地震应急救援实训功能设计策略[J]. 清华大学学报(自然科学版), 2020, 60(1): 9-17.
[8] 杨春宝, 张建民, 王睿. 海上风电吸力桶基础地震分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1207-1211.
[9] 周萌, 樊健生, 聂建国. 新型灾害冻震震害分析及形成机理[J]. 清华大学学报(自然科学版), 2017, 57(10): 1063-1069.
[10] 李媛媛, 陈建国, 张小乐, 袁宏永. 基于建筑结构破坏的地震伤亡评估方法及应用[J]. 清华大学学报(自然科学版), 2015, 55(7): 803-807,814.
[11] 彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn