Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1405-1422    DOI: 10.16511/j.cnki.qhdxxb.2021.25.023
  专栏:关键核心技术 本期目录 | 过刊浏览 | 高级检索 |
航空柱塞泵关键摩擦副表面改性与性能增强
李玉龙, 何永勇, 雒建斌
清华大学 摩擦学国家重点实验室, 北京 100084
Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps
LI Yulong, HE Yongyong, LUO Jianbin
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
全文: PDF(5701 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 柱塞泵是液压系统中最核心、技术难度最大的组成部分,在航空航天中应用广泛。航天器和飞机性能的不断提高,对航空柱塞泵的压力、转速、效率、安全性和可靠性等技术及性能指标提出了更高的要求。柱塞泵中三大关键摩擦副的润滑和摩擦磨损性能又是柱塞泵性能和服役寿命的决定性因素。该文在回顾柱塞泵发展历程和设计方法的基础上,主要对柱塞泵关键摩擦副的润滑理论及试验进行了总结,着重对航空柱塞泵关键摩擦副表面改性和性能增强技术及方法进行分析和阐述。最后,对未来重点的研究方向进行了探讨和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李玉龙
何永勇
雒建斌
关键词 摩擦与磨损柱塞泵摩擦副润滑机理表面改性    
Abstract:The hydraulic piston pump is the core component of hydraulic systems in aeronautical and astronautical systems that also presents severe technical challenges. Advanced spacecraft and aircraft need even higher performance hydraulic piston pumps with increased pressures, speeds, efficiencies, safety, and reliability. The lubricating and frictional characteristics of the three key friction pairs are the critical factors affecting the performance and service life of hydraulic piston pumps. This article reviews the development history and design methods of aviation hydraulic piston pumps, summarizes the lubrication theories and experiments of the key friction pairs, and analyzes traditional and advanced surface modification methods which can reduce the friction coefficient and increase the wear resistance. Future research directions are also discussed.
Key wordsfriction and wear    piston pump    friction pairs    lubrication mechanism    surface modification
收稿日期: 2020-12-18      出版日期: 2021-12-11
基金资助:国家重点基础研究发展计划(2014CB046404)
通讯作者: 何永勇,研究员,E-mail:heyy@mail.tsinghua.edu.cn     E-mail: heyy@mail.tsinghua.edu.cn
引用本文:   
李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422.
LI Yulong, HE Yongyong, LUO Jianbin. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1405-1422.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.023  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1405
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王伟. 航空液压泵滑靴副润滑特性及表面织构改性研究[D]. 北京:清华大学, 2018. WANG W. Research on the lubrication characteristics and surface texture modification of the slipper/swashplate pair in aviation hydraulic pump[D]. Beijing:Tsinghua University, 2018. (in Chinese)
[2] 俞云飞. 液压泵的发展展望[J]. 液压气动与密封, 2002(1):2-6. YU Y F. Development of hydraulic pumps[J]. Hydraulics Pneumatics & Seals, 2002(1):2-6. (in Chinese)
[3] 翟培祥. 斜盘式轴向柱塞泵设计[M]. 北京:煤碳工业出版社, 1978. ZHAI P X. Design of the swash plate axial piston pump[M]. Beijing:China Coal Industry Publishing House, 1978. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[4] 路甬祥. 流体传动与控制技术的历史进展与展望[J]. 机械工程学报, 2001, 37(10):1-9. LU Y X. Historical progress and prospects of fluid power transmission and control[J]. Chinese Journal of Mechanical Engineering, 2001, 37(10):1-9. (in Chinese)
[5] 王益群, 张伟. 流体传动及控制技术的评述[J]. 机械工程学报, 2003, 39(10):95-99. WANG Y Q, ZHANG W. Summary of fluid power transmission and control technology[J]. Chinese Journal of Mechanical Engineering, 2003, 39(10):95-99. (in Chinese)
[6] 张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]. 杭州:浙江大学, 2009. ZHANG B. Study on virtual prototype and pressure characteristics of oil film for axial piston pump[D]. Hangzhou:Zhejiang University, 2009. (in Chinese)
[7] 江国耀. 力士乐AV系列高压柱塞泵发展概况[J]. 建筑机械, 2003(7):17-20. JIANG G Y. Development of Rexroth serial high pressure piston pump[J]. Construction Machinery, 2003(7):17-20. (in Chinese)
[8] 徐绳武. Q**CY14-1BK系列轴向泵的研制[J]. 锻压装备与制造技术, 2004, 39(5):25-29. XU S W. Development of Q**CY14-1BK series axial plunger pump-updated product of CY14-1B axial pump[J] Metalforming Equipment & Industrial Furnace, 2004, 39(5):25-29. (in Chinese)
[9] 黄德欢, 路甬祥. 电反馈电液比例恒功率变量泵开发研究及其状态反馈控制[J]. 机床与液压, 1989(4):11-16, 32. HUANG D H, LU Y X. Research and development and state feedback control on electrohydraulic proportional constant power variable pump with electric feedback[J]. Machine Tool & Hydraulics, 1989(4):11-16, 32. (in Chinese)
[10] BACKÉ W. The present and future of fluid power[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 1993, 207(4):193-212.
[11] MANRING N D, JOHNSON R E. Modeling and designing a variable-displacement open-loop pump[J]. Journal of Dynamic Systems, Measurement, and Control, 1996, 118(2):267-271.
[12] IVANTYSYN J, IVANTYSYNOVA M. Hydrostatic pumps and motors:Principle, design, performance, modeling, analysis, control and testing[M]. New Dehli:Academic Books International, 2001.
[13] RABIE M G. Fluid power engineering[M]. New York:McGraw Hill, Inc, 2009.
[14] ACHTEN P, VAN DEN BRINK T, SCHELLEKENS M. Design of a variable displacement floating cup pump[C]//The 9th Scandinavian International Conference on Fluid Power. Linkoping, Sweden:SICFP, 2005.
[15] IVANTYSYNOVA M, LASAAR R. An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machines[J]. International Journal of Fluid Power, 2004, 5(1):23-36.
[16] PELOSI M, IVANTYSYNOVA M. A novel thermal model for the piston/cylinder interface of piston machines[C]//ASME 2009 Dynamic Systems and Control Conference. Hollywood, California, USA:ASME, 2009:37-44.
[17] VACCA A, KLOP R, IVANTYSYNOVA M. A numerical approach for the evaluation of the effects of air release and vapour cavitation on effective flow rate of axial piston machines[J]. International Journal of Fluid Power, 2010, 11(1):33-45.
[18] PELOSI M, IVANTYSYNOVA M. The influence of pressure and thermal deformation on the piston/cylinder interface film thickness[C]//52nd IFPE Conference on Fluid Power. Las Vegas, USA:IFPE, 2011:23-25.
[19] 许耀铭. 轴向柱塞泵滑靴和配流盘摩擦副的设计方法[J]. 液压与气动, 1977(2):3-12. XU Y M. Design method of slipper/swash plate and cylinder block/valve plate friction pairs of axial piston pump[J]. Chinese Hydraulics & Pneumatics, 1977(2):3-12. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[20] 刘雄杰. 轴向柱塞泵摩擦副的研究进展[J]. 中国机械, 2014(9):77-78. LIU X J. Research status of the frictional pairs in aviation hydraulic piston pump[J]. Machine China, 2014(9):77-78. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[21] MANRING N D. The discharge flow ripple of an axial-piston swash-plate type hydrostatic pump[J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(2):263-268.
[22] 袁合. 斜盘式轴向柱塞泵关键零部件结构优化设计[D]. 合肥:合肥工业大学, 2014. YUAN H. Structural optimization design on the key parts of swash plate axial piston pump[D]. Hefei:Hefei University of Technology, 2014. (in Chinese)
[23] 袁生杰, 董恩国. 斜盘式轴向柱塞泵滑靴的设计计算[J]. 天津工程师范学院学报, 2007, 17(1):40-42. YUAN S J, DONG E G. Design of sliding boot of swash-plate axial piston pump[J]. Journal of Tianjin University of Technology and Education, 2007, 17(1):40-42. (in Chinese)
[24] 许耀铭. 油膜理论与液压泵和马达的摩擦副设计[M]. 北京:机械工业出版社, 1987. XU Y M. Film theory and the design of friction pairs in hydraulic pumps and motors[M]. Beijing:China Machine Press, 1987. (in Chinese)
[25] 曾祥荣, 马六成. 轴向柱塞泵摩擦副综合设计法的应用和试验研究[J]. 机床与液压, 1984(1):8-15. ZENG X R, MA L C. Application and experimental study of friction pair integrated design method for axial piston pump[J]. Machine Tool & Hydraulics, 1984(1):8-15. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[26] VAN DER KOLK H J. Beitrag zur bestimmung der tragf Aa. higkeit des stark verkanteten gleitlagers kolben/zylinder an axialkolbenpumpen der schrägscheibenbauart[D]. Baden Wurttemberg:Uni Karlsruhe, 1972.
[27] IVANTYSNOVA M. Temperature field in the lubricating film between piston and cylinder in an axial piston machine[J]. Maschinenbautechnik, 1985, 34(12):532-535.(查阅所有网上资料, 未找到本条文献, 请联系作者确认)
[28] FANG Y, SHIRAKASHI M. Mixed lubrication characteristics between the piston and cylinder in hydraulic piston pump-motor[J]. Journal of Tribology, 1995, 117(1):80-85.
[29] VAN BEBBER D, MURRENHOFF H. Improving the wear resistance of hydraulic machines using PVD-coating technology[J]. Ölhydraulik und Pneumatik, 2002, 46(11-12):1-35.
[30] MURRENHOFF H, SCHARF S. Wear and friction of ZrCg-coated pistons of axial piston pumps[J]. International Journal of Fluid Power, 2006, 7(3):13-20.
[31] GELS S, MURRENHOFF H. Simulation of the lubricating film between contoured piston and cylinder[J]. International Journal of Fluid Power, 2010, 11(2):15-24.
[32] LEONHARD L, MURRENHOFF H, LANG J, et al. Tribological analysis of the piston/cylinder interface of hydrostatic piston machines-elastohydrodynamic simulation technique and experimental validation[J]. Tribologie und Schmierungstechnik, 2011, 58(5):5-9.
[33] VATHEUER N, MURRENHOFF H, BRÄCKELMANN U, et al. Mechanical losses in the piston-bushing contact of axial piston units[J]. JFPS International Journal of Fluid Power System, 2014, 8(1):24-29.
[34] PELOSI M, IVANTYSYNOVA M. A geometric multigrid solver for the piston-cylinder interface of axial piston machines[J]. Tribology Transactions, 2012, 55(2):163-174.
[35] ERNST M, IVANTYSYNOVA M. Axial piston machine cylinder block bore surface profile for high-pressure operating conditions with water as working fluid[C]//2018 Global Fluid Power Society PHD Symposium (GFPS). Samara, Russia:IEEE, 2018:1-7.
[36] PELOSI M, IVANTYSYNOVA M. Surface deformations enable high pressure operation of axial piston pumps[C]//ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. Arlington, Virginia, USA:ASME, 2012:193-200. DOI:10.1115/DSCC2011-5979.
[37] PELOSI M. An investigation on the fluid-structure interaction of piston/cylinder interface[D]. Ann Arbor:Purdue University, 2012:158.
[38] PELOSI M, IVANTYSYNOVA M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines[J]. Journal of Tribology, 2012, 134(4):041101.
[39] 王克龙. 轴向柱塞泵柱塞副微运动及润滑油膜的特性研究[D]. 哈尔滨:哈尔滨工业大学, 2019. WANG K L. Micro-motion and lubrication characteristics of piston-cylinder interface in axial piston pump[D]. Harbin:Harbin Institute of Technology, 2019. (in Chinese)
[40] FISHER M J. A theoretical determination of some characteristics of a tilted hydrostatic slipper bearing[R]. British Hydromechanics Research Association, 1962.(查阅所有网上资料, 未找到对应地点, 请联系作者确认)
[41] HARRIS R M, EDGE K A, TILLEY D G. Predicting the behavior of slipper pads in swashplate-type axial piston pumps[J]. Journal of Dynamic Systems, Measurement, and Control, 1996, 118(1):41-47.
[42] KOÇ E, HOOKE C J. Investigation into the effects of orifice size, offset and overclamp ratio on the lubrication of slipper bearings[J]. Tribology International, 1996, 29(4):299-305.
[43] KOÇ E, HOOKE C J. Considerations in the design of partially hydrostatic slipper bearings[J]. Tribology International, 1997, 30(11):815-823.
[44] KOÇ E, HOOKE C J. Description of an on-line clearance (oil film thickness) measurement technique developed-an application to slipper bearings[J]. Modelling Measurement & Control B:Solid & Fluid Mechanics & Thermics, Robotics Mechanical Systems, Civil Engineering, 2000, 69(2):19-34.
[45] HASHEMI S, KROKER A, BOBACH L, et al. Multibody dynamics of pivot slipper pad thrust bearing in axial piston machines incorporating thermal elastohydrodynamics and mixed lubrication model[J]. Tribology International, 2016, 96:57-76.
[46] 徐兵, 李迎兵, 张斌, 等. 轴向柱塞泵滑靴副倾覆现象数值分析[J]. 机械工程学报, 2010, 46(20):161-168. XU B, LI Y B, ZHANG B, et al. Numerical simulation of overturning phenomenon of axial piston pump slipper pair[J]. Journal of Mechanical Engineering, 2010, 46(20):161-168. (in Chinese)
[47] 李迎兵, 徐兵. 轴向柱塞泵滑靴副楔形油膜特性分析[J]. 液压与气动, 2010(9):87-91. LI Y B, XU B. Axial piston pump slipper pads dynamic characteristics of wedge oil film[J]. Chinese Hydraulics & Pneumatics, 2010(9):87-91. (in Chinese)
[48] ZHANG J H, CHAO Q, XU B, et al. Novel three-piston pump design for a slipper test rig[J]. Applied Mathematical Modelling, 2017, 52:65-81.
[49] FRANCO N. Pump design by force balance[J]. Hydraulics Pneum, 1961, 14(5):101-107.
[50] YAMAGUCHI A. Pressure distribution on valve plate of axial plunger pumps and motors[J]. Production Research, 1966, 18(7):186-188.(查阅所有网上资料, 未找到本条文献, 请联系作者确认)
[51] YAMAGUCHI A, FUJITANI Y, ISODA Y, et al. Characteristics of fluid films between a valve plate and a cylinder block of axial piston pumps and motors[J]. Hydraulics & Pneumatics, 1984, 15(4):314-321.
[52] 潘华辰. 膜厚为常数时的轴向柱塞泵配流副油膜稳态压力场的计算[J]. 流体工程, 1989(3):27-31. PAN H C. Calculation of steady-state pessure distribution with constant film thickness in cylinder block/valve plate[J]. Fluid Engineering, 1989(3):27-31. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[53] 艾青林. 轴向柱塞泵配流副润滑特性的试验研究[D]. 杭州:浙江大学, 2005. AI Q L. Experimental research on lubrication characteristics of port plate/cylinder block frictional pair in axial piston pump[D]. Hangzhou:Zhejiang University, 2005. (in Chinese)
[54] 胡纪滨, 邹云飞, 李小金, 等. 弹性变形对轴向柱塞泵配流副润滑特性的影响[J]. 农业工程学报, 2009, 25(12):114-118. HU J B, ZOU Y F, LI X J, et al. Influence of elastic deformation on lubricating characteristics of port plate pair of axial piston pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(12):114-118. (in Chinese)
[55] WANG Z Q, HU S, JI H, et al. Analysis of lubricating characteristics of valve plate pair of a piston pump[J]. Tribology International, 2018, 126:49-64.
[56] 胡山, 王兆强, 冀宏, 等. 微观织构配流副热-流-固耦合润滑特性[J]. 液压与气动, 2019(12):38-45. HU S, WANG Z Q, JI H, et al. Thermal-fluid-solid coupling lubrication characteristics of micro-texture port plate pair[J]. Chinese Hydraulics & Pneumatics, 2019(12):38-45. (in Chinese)
[57] WEN S Z. Principles of tribology[M]. 5th ed. Beijing:Tsinghua University Press, 2018.
[58] 赵文杰, 王立平, 薛群基. 织构化提高表面摩擦学性能的研究进展[J]. 摩擦学学报, 2011, 31(6):622-631. ZHAO W J, WANG L P, XUE Q J. Development and research progress of surface texturing on improving tribological performance of surface[J]. Tribology, 2011, 31(6):622-631. (in Chinese)
[59] ZHAO J A, FU Y L, MA J M, et al. Review of cylinder block/valve plate interface in axial piston pumps:Theoretical models, experimental investigations, and optimal design[J]. Chinese Journal of Aeronautics, 2021, 34(1):111-134.
[60] YE S G, TANG H S, REN Y, et al. Study on the load-carrying capacity of surface textured slipper bearing of axial piston pump[J]. Applied Mathematical Modelling, 2020, 77:554-584.
[61] MA X, WANG Q J, LU X Q, et al. Piston surface design to improve the lubrication performance of a swash plate pump[J]. Tribology International, 2019, 132:275-285.
[62] HAMILTON D B, WALOWIT J A, ALLEN C M. A theory of lubrication by microirregularities[J]. Journal of Fluids Engineering, 1966, 88(1):177-185.
[63] COSTA H L, HUTCHINGS I M. Some innovative surface texturing techniques for tribological purposes[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2014, 229(4):429-448.
[64] GROPPER D, WANG L, HARVEY T J. Hydrodynamic lubrication of textured surfaces:A review of modeling techniques and key findings[J]. Tribology International, 2016, 94:509-529.
[65] WANG W, HE Y Y, ZHAO J, et al. Numerical optimization of the groove texture bottom profile for thrust bearings[J]. Tribology International, 2017, 109:69-77.
[66] WANG W, HE Y Y, ZHAO J, et al. Optimization of groove texture profile to improve hydrodynamic lubrication performance:Theory and experiments[J]. Friction, 2020, 8(1):83-94.
[67] CHEN Y, ZHANG J H, XU B, et al. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps[J]. Tribology International, 2019, 138:316-329.
[68] DENG H S, HE S J, MAO F Y, et al. Effects of micropit depths on tribology performance of textured port plate pair[J]. Advances in Materials Science and Engineering, 2018, 2018:9501708.
[69] IVANTYSYNOVA M, HUANG C C. Thermal analysis in axial piston machines using CASPAR (simulation tool for performance prediction and design optimization)[C]//The Sixth International Conference on Fluid Power Transmission and Control. Hangzhou, China, 2005:651-656.(查阅所有网上资料, 未找到对应出版社, 请联系作者确认)
[70] BAKER J E. Power losses in the lubricating gap between cylinder block and valve plate of swash plate type axial piston machines[D]. West Lafayette:Purdue University, 2008.
[71] IVANTYSYNOVA M. The piston cylinder assembly in piston machines-a long journey of discovery[C]//Proceedings of 8th IFK International Conference on Fluid Power. Dresden, Germany:Hidrostaticni Pogoni, 2012:307-332.
[72] CHACON PORTILLO R. Cylinder block/valve plate interface performance investigation through the introduction of micro-surface shaping[D]. West Lafayette, IN, USA:Purdue University, 2014.
[73] PETTERSSON U, JACOBSON S. Textured surfaces in sliding boundary lubricated contacts-mechanisms, possibilities and limitations[J]. Tribology-Materials, Surfaces & Interfaces, 2007, 1(4):181-189.
[74] 张敏怡. 基于空心阴极离子源的氮碳硫多元共渗研究[D]. 北京:清华大学, 2020.(查阅所有网上资料, 未找到本条文献, 请联系作者确认) ZHANG M Y. Research on sulphonitrocarburized layers diffused by the hollow cathode discharging[D]. Beijing:Tsinghua University, 2020. (in Chinese)
[75] KOBAYASHI S, MATSUMOTO K. Lubrication between the valve plate and cylinder block for low-speed conditions in a swashplate-type axial piston motor[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1993, 59(561):1512-1517.
[76] ACHTEN P, EGGENKAMP S. Barrel tipping in axial piston pumps and motors[C]//Proceedings of 15th Scandinavian International Conference on Fluid Power. Linkoping, Sweden:Linkoping University Electronic Press, 2017:381-391. DOI:10.3384/ecp17144381.
[77] SCHUHLER G, JOURANI A, BOUVIER S, et al. Efficacy of coatings and thermochemical treatments to improve wear resistance of axial piston pumps[J]. Tribology International, 2018, 126:376-385.
[78] ŁATAS W, STOJEK J. Dynamic model of axial piston swash-plate pump for diagnostics of wear in elements[J]. Archive of Mechanical Engineering, 2011, 58(2):135-155.
[79] DONNET C, ERDEMIR A. Historical developments and new trends in tribological and solid lubricant coatings[J]. Surface and Coatings Technology, 2004, 180-181:76-84.
[80] JAHANMIR S, SUH N P, ABRAHAMSON II E P. The delamination theory of wear and the wear of a composite surface[J]. Wear, 1975, 32(1):33-49.
[81] LEE S Y, HONG Y S. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump[J]. Metals and Materials International, 2008, 14(1):33-40.
[82] LEE S Y, HONG Y S. Effect of crsin thin film coating on the improvement of the low-speed torque efficiency of a hydraulic piston pump[J]. Surface and Coatings Technology, 2007, 202(4-7):1129-1134.
[83] MURRENHOFF H. Recent sustainability related research results in fluid power[C]//Proceedings of 2011 International Conference on Fluid Power and Mechatronics. Beijing, China:IEEE, 2011:991-1001. DOI:10.1109/FPM.2011.6045907.
[84] MURRENHOFF H, VAN BEBBER D, LUGSCHEIDER E, et al. Metal carbon coatings (ZrCg and HfCg) for use in hydraulic components[J]. Olhydraulik and Pneumatik, 2001, 45(5):1-8.
[85] TYAGI A, WALIA R S, MURTAZA Q, et al. A critical review of diamond like carbon coating for wear resistance applications[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78:107-122.
[86] INAGUMA Y. Reduction of friction torque in vane pumps by using physical vapour deposition-coated vane[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2010, 224(11):2449-2458.
[87] ERDEMIR A, MARTIN J M. Superior wear resistance of diamond and DLC coatings[J]. Current Opinion in Solid State and Materials Science, 2018, 22(6):243-254.
[88] HONG Y S, LEE S R, KIM J H, et al. Application of a DLC-coating for improving hydrostatic piston shoe bearing performance under mixed friction conditions[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(2):335-341.
[89] KALIN M, MAJDI AČG F, VIŽINTIN J, et al. Analyses of the long-term performance and tribological behavior of an axial piston pump using diamondlike-carbon-coated piston shoes and biodegradable oil[J]. Journal of Tribology, 2008, 130(1):011013.
[90] HONG Y S, KIM J H, LEE S L. Performance improvement of a swash plate type piston pump in the low-speed range by a DLC coating[J]. Journal of Drive and Control, 2014, 11(4):25-31.
[91] MOTTA A, CANNELLI O, BOCCIA A, et al. A mechanistic explanation of the peculiar amphiphobic properties of hybrid organic-inorganic coatings by combining XPS characterization and DFT modeling[J]. ACS Applied Materials & Interfaces, 2015, 7(36):19941-19947.
[92] RAIMONDO M, VERONESI F, BOVERI G, et al. Superhydrophobic properties induced by sol-gel routes on copper surfaces[J]. Applied Surface Science, 2017, 422:1022-1029.
[93] MALAVASI I, VERONESI F, CALDARELLI A, et al. Is a knowledge of surface topology and contact angles enough to define the drop impact outcome?[J]. Langmuir, 2016, 32(25):6255-6262.
[94] CALDARELLI A, RAIMONDO M, VERONESI F, et al. Sol-gel route for the building up of superhydrophobic nanostructured hybrid-coatings on copper surfaces[J]. Surface and Coatings Technology, 2015, 276:408-415.
[95] RAIMONDO M, BLOSI M, CALDARELLI A, et al. Wetting behavior and remarkable durability of amphiphobic aluminum alloys surfaces in a wide range of environmental conditions[J]. Chemical Engineering Journal, 2014, 258:101-109.
[96] BONANNO A, RAIMONDO M, ZAPPERI S. Surface nano-structured coating for improved performance of axial piston pumps[M]//TOLIO T, COPANI G, TERKAJ W, et al. Factories of the Future. Cham:Springer, 2019:295-314.
[97] 冶银平, 陈建敏, 周惠娣. 粘结石墨基固体润滑涂层的微动摩擦磨损性能[J]. 中南大学学报(自然科学版), 2008, 39(1):103-107. YE Y P, CHEN J M, ZHOU H D. Fretting friction and wear properties of bonded graphite solid lubricating coatings[J]. Journal of Central South University (Science and Technology), 2008, 39(1):103-107. (in Chinese)
[98] 姚巍. 表面粘结固体润滑涂层摩擦学性能研究[D]. 合肥:合肥工业大学, 2009. YAO W. Study on the tribology properties of adhesive solid lubricating coatings[D]. Hefei:Hefei University of Technology, 2009. (in Chinese)
[99] 马少波, 尹延国, 焦明华, 等. 铁基材料表面粘结润滑涂层摩擦学性能研究[J]. 润滑与密封, 2008, 33(12):36-39. MA S B, YIN Y G, JIAO M H, et al. Study on the tribological properties of adhesive solid lubricating coating on iron-based materials[J]. Lubrication Engineering, 2008, 33(12):36-39. (in Chinese)[WX)] [WX(3KG0,25*2]
[100] KIM S G, YEO K H, CHO Y K, et al. The phenomenon of high hardness values on the S-phase layer of austenitic stainless steel via screen plasma nitriding process[J]. Advances in Materials Physics and Chemistry, 2018, 8(6):257-268.
[101] MITELEA I, GHERA C, BORDEA ŞU I, et al. Assessment of cavitation erosion of gas-nitrided Cr-Ni-Mo steels[J]. Journal of Tribology, 2018, 140(6):061601.
[102] LI Y, ZHANG S Z, QIU J X, et al. Effect of electric potentials on microstructure, corrosion and wear characteristic of the nitrided layer prepared on 2Cr13 stainless steel by plasma nitriding[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6):733-745.
[103] LI Y, YE Q W, ZHU Y J, et al. Microstructure, adhesion and tribological properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel[J]. Surface and Coatings Technology, 2019, 362:27-34.
[104] LI Y, HE Y Y, WANG W, et al. Plasma nitriding of AISI 304 stainless steel in cathodic and floating electric potential:Influence on morphology, chemical characteristics and tribological behavior[J]. Journal of Materials Engineering and Performance, 2018, 27(3):948-960.
[105] LI Y, HE Y Y, QIU J X, et al. Enhancement of pitting corrosion resistance of austenitic stainless steel through deposition of amorphous/nanocrystalline oxy-nitrided phases by active screen plasma treatment[J]. Materials Research, 2018, 21(6):e20170697.
[106] LI Y, HE Y Y, ZHANG S Z, et al. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge[J]. Applied Physics A, 2017, 124(1):65.
[107] LI Y, HE Y Y, ZHANG S Z, et al. Microstructures and tribological behaviour of oxynitrided austenitic stainless steel[J]. Vacuum, 2017, 146:1-7.
[108] 李杨. 基于空心阴极放电的材料表面等离子体改性技术研究[D]. 大连:大连海事大学, 2012. LI Y. Research on the technology of plasma surface modification with hollow cathode discharge[D]. Dalian:Dalian Maritime University, 2012. (in Chinese)
[109] 李杨, 何永勇, 张尚洲, 等. AISI304奥氏体不锈钢阳极渗氮层的组织与摩擦磨损性能[J]. 材料热处理学报, 2017, 38(2):152-157. LI Y, HE Y Y, ZHANG S Z, et al. Tribological properties and structure of anodic nitrided layer on AISI 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(2):152-157. (in Chinese)
[110] LI Y, HE Y Y, MAO J Y, et al. Corrosion behavior of active screen plasma nitrided 38crmoal steel under marine environment[C]//5th Asia Conference on Mechanical and Materials Engineering (ACMME). Tokyo, Japan:IOP Publishing, 2017. DOI:10.1088/1757-899X/241/1/012008.
[111] 李杨, 何永勇, 朱宜杰, 等. 2Cr13马氏体不锈钢活性屏离子渗氮技术[J]. 金属热处理, 2017, 42(5):163-167. LI Y, HE Y Y, ZHU Y J, et al. Active screen plasma nitriding of 2Cr13 martensitic stainless steel[J]. Heat Treatment of Metals, 2017, 42(5):163-167. (in Chinese)
[112] 李杨, 何永勇, 邱剑勋, 等. AISI 304奥氏体不锈钢高温快速氮化组织与耐腐蚀性能的研究[J]. 热加工工艺, 2017, 46(20):53-55. LI Y, HE Y Y, QIU J X, et al. Research on microstructure and corrosion resistance properties of AISI 304 austenitic stainless steel produced by high temperature fast nitriding[J]. Hot Working Technology, 2017, 46(20):53-55. (in Chinese)
[113] LI Y, ZHANG S Z, HE Y Y, et al. Characteristics of the nitrided layer formed on AISI 304 austenitic stainless steel by high temperature nitriding assisted hollow cathode discharge[J]. Materials & Design, 2014, 64:527-534.
[114] SOLA R, POLI G, VERONESI P, et al. Effects of surface morphology on the wear and corrosion resistance of post-treated nitrided and nitrocarburized 42CrMo4 steel[J]. Metallurgical and Materials Transactions A, 2014, 45(6):2827-2833.
[115] TAVAKOLI H. Investigation of tribological and physical behavior of sulfide film produced by DC-regime plasma electrolysis[J]. Surface and Coatings Technology, 2017, 309:1099-1104.
[116] HAN B, ZHANG M K, QI C H, et al. Characterization and friction-reduction performances of composite coating produced by laser cladding and ion sulfurizing[J]. Materials Letters, 2015, 150:35-38.
[117] WANG H D, ZHUANG D M, WANG K L, et al. Comparison of the tribological properties of an ion sulfurized coating and a plasma sprayed FeS coating[J]. Materials Science and Engineering:A, 2003, 357(1-2):321-327.
[118] ZHANG M Y, CHEN J H, LI Y, et al. Study on microstructural and tribological properties of sulphonitrocarburized layers diffused by hollow cathode discharging[J]. Vacuum, 2020, 174:109188.
[119] WANG S Y, CHU P K, TANG B Y, et al. Improvement of the wear and corrosion resistance of oil pump materials using plasma immersion ion implantation[J]. Surface and Coatings Technology, 1998, 98(1-3):897-900.
[120] 王曦梓, 韩英, 赵微微, 等. 医用聚电解质润滑涂层[J]. 清华大学学报(自然科学版), 2020, 60(8):630-638. WANG X Z, HAN Y, ZHAO W W, et al. Polyelectrolyte lubrication coatings for biomedical applications[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8):630-638. (in Chinese)
[121] 吉政甲, 靳洪允, 骆晚玥, 等. 造粒氧化锆增强复合材料的摩擦学性能及优化[J]. 清华大学学报(自然科学版), 2020, 60(8):639-647. JI Z J, JIN H Y, LUO W Y, et al. Optimization of the tribological characteristics of lubricant materials with granulated ZrO2[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8):639-647. (in Chinese)
[122] ZHANG W N, WANG L Z, FENG Z X, et al. Research progress on selective laser melting (slm) of magnesium alloys:A review[J]. Optik, 2020, 207:163842.
[123] NAGARAJAN B, HU Z H, SONG X, et al. Development of micro selective laser melting:The state of the art and future perspectives[J]. Engineering, 2019, 5(4):702-720.
[124] ZHU Y, ZOU J, CHEN X, et al. Tribology of selective laser melting processed parts:Stainless steel 316 L under lubricated conditions[J]. Wear, 2016, 350-351:46-55.
[125] ZHU Y, CHEN X, ZOU J, et al. Sliding wear of selective laser melting processed Ti6Al4V under boundary lubrication conditions[J]. Wear, 2016, 368-369:485-495.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn