Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (4): 361-366    DOI: 10.16511/j.cnki.qhdxxb.2021.25.024
  论文 本期目录 | 过刊浏览 | 高级检索 |
流化床-化学气相沉积法制备金属涂层包覆燃料颗粒
杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林
清华大学 核能与新能源技术研究院, 北京 100084
Preparation of metal coated fuel particles using the fluidized bed-chemical vapor deposition method
YANG Xu, CHENG Xinyu, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(10765 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 含有Nb、Zr、W等金属包覆层的包覆型燃料颗粒是一种新型的燃料元件形式,在核工业中有重要应用。该文利用流化床-化学气相沉积(FB-CVD)法,制备得到了含有金属包覆层的新型包覆颗粒,研究了热态输运与冷态输运2种方式对金属卤化物前驱体的载带,最终成功制备得到了纯相金属Nb与金属Zr包覆层。实验结果表明,金属包覆层可有效提升包覆颗粒整体的力学性能。该文还研究了沉积温度、前驱体输运、包覆层氧化等不同因素对沉积速率的影响。结果表明: CVD制备的金属包覆层可有效提升包覆颗粒整体的压碎强度,但抗氧化性较差,不适用于直接在氧化环境下制备与使用,可作为包覆颗粒的中间涂层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭
程心雨
刘荣正
刘兵
邵友林
刘马林
关键词 包覆颗粒流化床-化学气相沉积(FB-CVD)铌涂层锆涂层    
Abstract:Fuel particles are coated with metals such as Nb, Zr, or W for advanced nuclear industry fuels. Coated particles with Nb and Zr coatings were fabricated using fluidized bed-chemical vapor deposition (FB-CVD) with investigations of the thermal transport characteristics of the precursors. The results showed that the metal coating improves the mechanical properties of the coated particles. The investigation studied the effects of the deposition temperature, precursor transport and oxidation on the metal deposition rate. The metal coating layer enhances the crushing strength, but has poor oxidation resistance, so it cannot be used in an oxidizing environment.
Key wordscoated particle    FB-CVD    Nb coating    Zr coating
收稿日期: 2020-12-31      出版日期: 2021-04-16
基金资助:刘马林,副教授,E-mail:liumalin@tsinghua.edu.cn
引用本文:   
杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林. 流化床-化学气相沉积法制备金属涂层包覆燃料颗粒[J]. 清华大学学报(自然科学版), 2021, 61(4): 361-366.
YANG Xu, CHENG Xinyu, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin. Preparation of metal coated fuel particles using the fluidized bed-chemical vapor deposition method. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 361-366.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.024  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I4/361
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] VERFONDERN K, NABIELEK H, KENDALL J M. Coated particle fuel for high temperature gas cooled reactors[J]. Nuclear Engineering and Technology, 2007, 39(5):603-616.
[2] DEMKOWICZ P A, LIU B, HUNN J D. Coated particle fuel:Historical perspectives and current progress[J]. Journal of Nuclear Materials, 2019, 515:434-450.
[3] TERRANI K A, KIGGANS J O, KATOH Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 2012, 426(1-3):268-276.
[4] MALHERBE J B. Diffusion of fission products and radiation damage in SiC[J]. Journal of Physics D:Applied Physics, 2013, 46(47):473001.
[5] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3):329-377.
[6] LIU R Z, LIU M L, WANG Z L, et al. Preparation of fine grained SiC layer by fluidized bed chemical vapor deposition with pulsed propylene[J]. Journal of the American Ceramic Society, 2016, 99(6):1870-1873.
[7] YANG X, ZHANG F, GUO M S, et al. Preparation of SiC layer with sub-micro grain structure in TRISO particles by spouted bed CVD[J]. Journal of the European Ceramic Society, 2019, 39(9):2839-2845.
[8] TUCKER D S, BARNES M W, HONE L, et al. High density, uniformly distributed W/UO2 for use in nuclear thermal propulsion[J]. Journal of Nuclear Materials, 2017, 486:246-249.
[9] LIU Q M, ZHANG L T, CHENG L F. Low pressure chemical vapor deposition of niobium coatings on graphite[J]. Vacuum, 2010, 85(2):332-337.
[10] LIU Q M, ZHANG L T, CHENG L F, et al. Low pressure chemical vapor deposition of niobium coating on silicon carbide[J]. Applied Surface Science, 2009, 255(20):8611-8615.
[11] LIU R Z, LIU M L, CHANG J X. Experimental phase diagram of SiC in CH3SiCl3-Ar-H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications[J]. Journal of Materials Research, 2016, 31(17):2695-2705.
[12] LIU M L, LIU R Z, LIU B, et al. Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method[J]. Procedia Engineering, 2015, 102:1890-1895.
[13] KOBYAKOV V P. Chemical vapor deposition of niobium in the NbCl5-H2-O2 system[J]. Inorganic Materials, 2002, 38(9):895-899.
[14] LIAN Y Y, LIU X, XU Z Y, et al. Preparation and properties of CVD-W coated W/Cu FGM mock-ups[J]. Fusion Engineering and Design, 2013, 88(9-10):1694-1698.
[15] 刘廷伟, 张良, 潘小强, 等. 影响NbCl5流量的因素及NbCl5流量与涂铌质量的关系研究[J]. 核动力工程, 2012, 33(S2):144-148. LIU T W, ZHANG L, PAN X Q, et al. Research on factors influencing flux of NbCl5 and relations between flux of NbCl5 and quality of spreading niobium[J]. Nuclear Power Engineering, 2012, 33(S2):144-148. (in Chinese)
[16] 潘小强, 杨静, 张良, 等. 核燃料颗粒化学气相沉积包覆铌层的热力学分析[J]. 核动力工程, 2013, 34(5):61-64. PAN X Q, YANG J, ZHANG L, et al. Thermodynamic analysis of chemical vapor depositing Nb coating on fuel particles[J]. Nuclear Power Engineering, 2013, 34(5):61-64. (in Chinese)
[1] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn