Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (4): 367-376    DOI: 10.16511/j.cnki.qhdxxb.2021.25.027
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法
刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏
清华大学 核能与新能源技术研究院, 北京 100084
Defect detection in the graphite components and carbon bricks in high temperature gas-cooled reactors using helical CT
LIU Renjie, SUN Yuewen, LIU Ximing, MIAO Jichen, ZHOU Liye, CONG Peng
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(5541 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 石墨构件和碳砖是构成高温气冷堆(high temperature gas-cooled reactor,HTGR)堆芯及反射层的重要材料,在其生产运输过程中,不可避免会出现缺陷,当使用了有较为严重的缺陷的石墨构件或碳砖进行建设时,将对反应堆造成重大安全隐患。目前传统检测方法主要是基于目视的表面检查,无法检测其内部缺陷。该文提出了一种基于螺旋CT的石墨构件及碳砖检测方案,并采用数值模拟的方式,对大尺寸碳砖模体进行了螺旋CT重建,研究了不同螺距、旋转速度及不同重建算法对重建图像质量的影响。结果表明,螺距对重建图像质量影响较大,在螺距为0.8时可基本满足检测需求;旋转速度对图像质量影响相对较小;在较优参数下,采用CGLS重建算法,最小可检测至φ2 mm的孔缺陷和宽1 mm的缝缺陷。该研究结果对螺旋CT石墨碳砖检测系统及检测方案的设计具有重要参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘仁杰
孙跃文
刘锡明
苗积臣
周立业
丛鹏
关键词 石墨构件及碳砖高温气冷堆(HTGR)缺陷检测螺旋CT    
Abstract:The graphite components and carbon bricks are essential materials for the core and reflector of the high temperature gas-cooled reactor (HTGR). However, production and transport create defects. Defective graphite components or carbon bricks can lead to serious safety hazards in the HTGR. The current defect detection methods are mainly based on visual inspections, which cannot detect internal defects. This paper describes a method to detect defects inside the graphite components and carbon bricks using helical CT. Numerical simulations of large carbon bricks were used to study the influence of pitch, rotational speed and reconstruction algorithm on the quality of the reconstructed images. The results show that the pitch greatly influences the reconstructed image quality with 0.8 as the optimal pitch for the best image quality. The rotational speed has less influence on the image quality. The CGLS reconstruction algorithm with the optimal parameters can detect holes as small as 2 mm and cracks as small as 1 mm. These results are important when designing defect detection systems for graphite components and carbon bricks.
Key wordsnuclear graphite components and carbon brick    high temperature gas-cooled reactor (HTGR)    defect detecting    helical CT
收稿日期: 2021-01-09      出版日期: 2021-04-16
基金资助:丛鹏,研究员,E-mail:congp@mail.tsinghua.edu.cn
引用本文:   
刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
LIU Renjie, SUN Yuewen, LIU Ximing, MIAO Jichen, ZHOU Liye, CONG Peng. Defect detection in the graphite components and carbon bricks in high temperature gas-cooled reactors using helical CT. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 367-376.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.027  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I4/367
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 吴宗鑫. 我国高温气冷堆的发展[J]. 核动力工程, 2000, 21(1):39-43, 80. WU Z X. The development of high temperature gas-cooled reactor in China[J]. Nuclear Power Engineering, 2000, 21(1):39-43, 80. (in Chinese)
[2] ZHANG Z Y, WU Z X, SUN Y L, et al. Design aspects of the Chinese modular high temperature gas-cooled reactor HTR-PM[J]. Nuclear Engineering and Design, 2006, 236(5-6):485-490.
[3] ZHANG Z S, LIU J J, HE S Y, et al. Structural design of ceramic internals of HTR-10[J]. Nuclear Engineering and Design, 2002, 218(1-3):123-136.
[4] WU Z X, LIN D C, ZHONG D X. The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218(1-3):25-32.
[5] 徐世江. 核工程中的石墨和炭素材料(第三讲)[J]. 炭素技术, 2000(3):44-48. XU S J. Graphite and carbonaceous material in nuclear engineering[J]. Carbon Techniques, 2000(3):44-48. (in Chinese)
[6] SUTTON A L, HOWARD V C. The role of porosity in the accommodation of thermal expansion in graphite[J]. Journal of Nuclear Materials, 1962, 7(1):58-71.
[7] HODGKINS A, MARROW T J, MUMMERY P, et al. X-ray tomography observation of crack propagation in nuclear graphite[J]. Materials Science and Technology, 2006, 22(9):1045-1051.
[8] SHI L, LI H Y, ZOU Z M, et al. Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens[J]. Journal of Nuclear Materials, 2008, 372(2-3):141-151.
[9] SHIBATA T, ISHIHARA M. Ultrasonic signal characteristics by pulse-echo technique and mechanical strength of graphite materials with porous structure[J]. Nuclear Engineering and Design, 2001, 203(2-3):133-141.
[10] SEIGER H, WAGNER J. Flaw classification by a spectral division of ultrasonic echoes[J]. NDT International, 1983, 16(4):195-200.
[11] TANG W, SHI Y W, CHEN Y J. Ultrasonic testing for friction welded joints in low carbon steel with weak bonding[J]. Insight, 1995, 37(7):523-526.
[12] BAJPAI M, SCHORR C, MAISL M, et al. High resolution 3D image reconstruction using the algebraic method for cone-beam geometry over circular and helical trajectories[J].]NDT & E International, 2013, 60:62-69.
[13] XIA D, CHO S, BIAN J G, et al. 3D ROI-image reconstruction from cone-beam data[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(2):866-875.
[14] BERGER M J, HUBBELL J H, SELTZER S M, et al. NIST standard reference database 8 (XGAM)[DB/OL].[2010-11]. https://www.nist.gov/pml/xcom-photon-cross-sections-database.
[15] 卢建超. 高温堆球流CT辐射探测系统研究[D]. 北京:清华大学, 2018.LU J C. Research on the radiation detecting system for HTR-PM pebble flow CT[D]. Beijing:Tsinghua University, 2018. (in Chinese)
[16] ZHANG H, OUYANG L, HUANG J, et al. Few-view cone-beam CT reconstruction with deformed prior image[J]. Medical Physics, 2014, 41(12):121905.
[17] KIM J H, NUYTS J, KYME A, et al. A rigid motion correction method for helical computed tomography (CT)[J]. Physics in Medicine & Biology, 2015, 60(5):2047-2073.
[1] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[2] 周恺, 张睿哲, 叶宽, 李鸿达, 王哲, 黄松岭. 基于同步压缩小波变换的接地扁钢缺陷电磁超声SH导波检测方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 2013-2020.
[3] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[4] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[5] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[6] 王晓萌, 管志斌, 辛伟, 王嘉捷. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1267-1272.
[7] 万欣, 刘锡明, 苗积臣, 吴志芳. 改进的多层螺旋CT线性插值算法[J]. 清华大学学报(自然科学版), 2016, 56(12): 1346-1351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn