Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1645-1659    DOI: 10.16511/j.cnki.qhdxxb.2021.25.26
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
流化床-化学气相沉积颗粒包覆过程数值模拟
陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林
清华大学 核能与新能源技术研究院, 北京 100084
Numerical simulations of particle coating using the fluidized bed-chemical vapor deposition method
CHEN Meng, CHEN Zhao, LIU Rongzheng, LIU Bing, SHAO Youlin, TANG Yaping, LIU Malin
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(13339 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 利用流化床-化学气相沉积(fluidized bed-chemical vapor deposition, FB-CVD)技术制备包覆燃料颗粒是高温气冷堆燃料元件生产过程中的关键工艺之一,该文首先分析了FB-CVD颗粒包覆过程的特点,并综合流化床中的速度场、温度场、浓度场及CVD模型建立了CFD-DEM-CVD多物理场多尺度耦合模型用于颗粒包覆过程的研究。然后从多个方面优化包覆模型,分别提出了CRF模型用于模拟物质的分解和沉积过程, PBM模型用于求解沉积组分的尺径分布及IBP模型用于求解包覆颗粒密度的改变。将该文提出的包覆模型用于实际的案例计算发现,模拟结果和实验结果吻合较好,验证了模型的可靠性和准确性。该文建立的颗粒包覆模型可以作为一种基础理论模型拓展颗粒学学术研究范畴,还可用于颗粒包覆过程的研究,为实际的工业生产提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈猛
陈昭
刘荣正
刘兵
邵友林
唐亚平
刘马林
关键词 颗粒包覆流化床-化学气相沉积(FB-CVD)数值模拟CFD-DEM多尺度耦合    
Abstract:The preparation of coated fuel particles using fluidized bed-chemical vapor deposition (FB-CVD) is one of the key processes in the production of fuel elements for high-temperature gas-cooled reactors.The characteristics of the particle coating process were predicted using a multi-physics,multi-scale,coupled CFD-DEM-CVD model to predict the velocity,temperature,and concentration fields for the CVD method in fluidized beds.Then,the coating method was modeled using a chemical reaction flow model to simulate the decomposition and deposition of the chemical substances with the population balance model used to solve for the size distribution of the deposited components and the inner bonding particle model used to predict the changes in the coating particle density.This coating model was used to simulate various cases with the simulation results in good agreement with experimental data.This coating model can be used to study the particle coating process and optimize coating processes for industrial production.
Key wordsparticle coatings    fluidized bed-chemical vapor deposition (FB-CVD)    numerical simulations    CFD-DEM    multi-scale coupled
收稿日期: 2021-01-08      出版日期: 2022-09-03
基金资助:刘马林,副教授,E-mail:liumalin@tsinghua.edu.cn
引用本文:   
陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
CHEN Meng, CHEN Zhao, LIU Rongzheng, LIU Bing, SHAO Youlin, TANG Yaping, LIU Malin. Numerical simulations of particle coating using the fluidized bed-chemical vapor deposition method. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1645-1659.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.26  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1645
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 陈猛,刘马林,唐亚平,等.颗粒包覆过程的数值模拟方法比较研究[J].中国粉体技术, 2018, 24(1):7-15. CHEN M, LIU M L, TANG Y P, et al. Comparative study of numerical simulation method for particle coating process[J]. China Powder Science and Technology, 2018, 24(1):7-15.(in Chinese)
[2] LIU M L, LIU R Z, LIU B, et al. Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method[J]. Procedia Engineering, 2015, 102:1890-1895.
[3] SAWA K, UETA S. Research and development on HTGR fuel in the HTTR project[J]. Nuclear Engineering and Design, 2004, 233(1-3):163-172.
[4] PANNALA S, DAW C S, FINNEY C E A, et al. Simulating the dynamics of spouted-bed nuclear fuel coaters[J]. Chemical Vapor Deposition, 2007, 13(9):481-490.
[5] 刘荣正,刘马林,邵友林,等.流化床-化学气相沉积技术的应用及研究进展[J].化工进展, 2016, 35(5):1263-1272. LIU R Z, LIU M L, SHAO Y L, et al. Application and research progress of fluidized bed-chemical vapor deposition technology[J]. Chemical Industry and Engineering Progress, 2016, 35(5):1263-1272.(in Chinese)
[6] MANN U, RUBINOVITCH M, CROSBY E J. Characterization and analysis of continuous recycle systems[J]. AIChE Journal, 1979, 25(5):873-882.
[7] SHELUKAR S, HO J, ZEGA J, et al. Identification and characterization of factors controlling tablet coating uniformity in a Wurster coating process[J]. Powder Technology, 2000, 110(1-2):29-36.
[8] PANDEY P, KATAKDAUNDE M, TURTON R. Modeling weight variability in a pan coating process using Monte Carlo simulations[J]. AAPS PharmSciTech, 2006, 7(4):E2-E11.
[9] KUSHAARI K, PANDEY P, SONG Y X, et al. Monte Carlo simulations to determine coating uniformity in a Wurster fluidized bed coating process[J]. Powder Technology, 2006, 166(2):81-90.
[10] MARONGA S J, WNUKOWSKI P. Modelling of the three-domain fluidized-bed particulate coating process[J]. Chemical Engineering Science, 1997, 52(17):2915-2925.
[11] KUMAR R, FREIREICH B, WASSGREN C. DEM-compartment-population balance model for particle coating in a horizontal rotating drum[J]. Chemical Engineering Science, 2015, 125:144-157.
[12] LI J F, FREIREICH B, WSAAGREN C, et al. A general compartment-based population balance model for particle coating and layered granulation[J]. AIChE Journal, 2012, 58(5):1397-1408.
[13] TOSCHKOFF G, JUST S, FUNKE A, et al. Spray models for discrete element simulations of particle coating processes[J]. Chemical Engineering Science, 2013, 101:603-614.
[14] BÖRNER M, BVCK A, TSOTSAS E. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation[J]. Chemical Engineering Science, 2017, 161:187-197.
[15] HILTON J E, YING D Y, CLEARY P W. Modelling spray coating using a combined CFD-DEM and spherical harmonic formulation[J]. Chemical Engineering Science, 2013, 99:141-160.
[16] NOROUZI H R. Simulation of pellet coating in Wurster coaters[J]. International Journal of Pharmaceutics, 2020, 590:119931.
[17] LIU M L, CHEN M, LI T J, et al. CFD-DEM-CVD multi-physical field coupling model for simulating particle coating process in spout bed[J]. Particuology, 2019, 42:67-78.
[18] CZOK G, YE M, KUIPERS J A M H, et al. Modeling of chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation[J]. International Journal of Chemical Reactor Engineering, 2005, 3(1):A57.
[19] FRIES L, ANTONYUK S, HEINRICH S, et al. Collision dynamics in fluidised bed granulators:A DEM-CFD study[J]. Chemical Engineering Science, 2013, 86:108-123.
[20] LIU M L, WEN Y Y, LIU R Z, et al. Investigation of fluidization behavior of high density particle in spouted bed using CFD-DEM coupling method[J]. Powder Technology, 2015, 280:72-82.
[21] CHEN M, LIU M L, TANG Y P. Comparison of Euler-Euler and Euler-Lagrange approaches for simulating gas-solid flows in a multiple-spouted bed[J]. International Journal of Chemical Reactor Engineering, 2019, 17(7):20180254.
[22] CHEN M, LIU M L, LI T J, et al. A novel mixing index and its application in particle mixing behavior study in multiple-spouted bed[J]. Powder Technology, 2018, 339:167-181.
[23] GRYCZKA O, HEINRICH S, DEEN N G, et al. Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus[J]. Chemical Engineering Science, 2009, 64(14):3352-3375.
[24] XU B H, YU A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science, 1997, 52(16):2785-2809.
[25] CHU K W, YU A B. Numerical simulation of complex particle-fluid flows[J]. Powder Technology, 2008, 179(3):104-114.
[26] LI J, MASON D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles[J]. Powder Technology, 2000, 112(3):273-282.
[27] CHAUDHURI B, MUZZIO F J, TOMASSONE M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science, 2006, 61(19):6348-6360.
[28] KHAN R U, BAJOHR S, GRAF F, et al. Modeling of acetylene pyrolysis under steel vacuum carburizing conditions in a tubular flow reactor[J]. Molecules, 2007, 12(3):290-296.
[29] KIEFER J H, VON DRASEK W A. The mechanism of the homogeneous pyrolysis of acetylene[J]. International Journal of Chemical Kinetics, 1990, 22(7):747-786.
[30] BUCHHOLZ D, KHAN R U, BAJOHR S, et al. Computational fluid dynamics modeling of acetylene pyrolysis for vacuum carburizing of steel[J]. Industrial&Engineering Chemistry Research, 2010, 49(3):1130-1137.
[31] ZHANG W G, HVTTINGER K J. CVD of SiC from Methyltrichlorosilane. Part II:Composition of the gas phase and the deposit[J]. Chemical Vapor Deposition, 2001, 7(4):173-181.
[32] 臧卫国.一个新的黏附系数公式及其应用[C]//中国宇航学会结构强度与环境工程专委会航天空间环境工程信息网学术讨论会.北京,中国:中国宇航学会, 2005:181-186. ZANG W G. A new formula of adhesion coefficient and its application[C]//Academic Symposium on the Aerospace Environmental Engineering Information Network of the Special Committee of Structural Strength and Environmental Engineering of Chinese Astronautical Society. Beijing, China:CSA, 2005:181-186.(in Chinese)
[33] LI A J, DEUTSCHMANN O. Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models[J]. Chemical Engineering Science, 2007, 62(18-20):4976-4982.
[34] RAMKRISHNA D. Population balances:Theory and applications to particulate systems in engineering[M]. San Diego, California:Academic Press, 2000.
[35] KIM Y, KIM H U, SHIN Y, et al. Modeling of silicon nanoparticle formation in inductively coupled plasma using a modified collision frequency function[J]. Journal of Mechanical Science and Technology, 2014, 28(11):4693-4703.
[36] CHENG J C, YANG C, MAO Z S, et al. CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank[J]. Industrial&Engineering Chemistry Research, 2009, 48(15):6992-7003.
[37] LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5):1225-1233.
[38] FARNOUSH H, MOHANDESI J A, FATMEHSARI D H. Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings:A kinetic study based on a statistical analysis[J]. International Journal of Applied Ceramic Technology, 2013, 10(1):87-96.
[39] LIU M L, LIU B, SHAO Y L. The study on pyrolytic carbon powder in the coating process of fuel particle for high-temperature gas-cooled reactor[C]//18th International Conference on Nuclear Engineering. Xi'an, China:ASME, 2010:545-549.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn