Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 13-20    DOI: 10.16511/j.cnki.qhdxxb.2021.26.010
  专题:防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
超大型油罐火灾分区灭火方案及实验验证
田逢时1,2, 薛冉3, 郑昕1, 康青春2,4
1. 清华大学 工程物理系, 公共安全研究院, 北京城市综合应急科学重点实验室, 北京 100084;
2. 中国人民警察大学, 廊坊 065000;
3. 廊坊师范学院 电子信息工程学院, 廊坊 065000;
4. 常州大学, 常州 213000
Partitioned fire control of very large oil tank fires
TIAN Fengshi1,2, XUE Ran3, ZHENG Xin1, KANG Qingchun2,4
1. Beijing Key Laboratory of City Integrated Emergency Response Science, Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. China People's Police University, Langfang 065000, China;
3. College of Electronic Information Engineering, Langfang Normal University, Langfang 065000, China;
4. Changzhou University, Changzhou 213000, China
全文: PDF(2808 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 现有超大型油罐密封圈初期火灾采用完全填充方式进行灭火,绝大部分泡沫覆盖了未燃烧区域,造成有效供给量不足。为提高灭火效率,节约泡沫用量,该文在不改变现有油罐结构和灭火系统基础上,提出了一种超大型油罐火灾分区灭火方案。为验证方案的有效性,设计搭建了环形油盘装置和小型外浮顶油盘实验装置,对泡沫流动性和分区灭火有效性进行实验研究,并重点对比分析了分区条件下的泡沫有效覆盖时间、泡沫用量、灭火时间等参数,探讨了分区之间预留缝隙对泡沫流动的影响。结果表明:不同区域泡沫溢出量与缝隙宽度直接相关,与油盘的形状、大小等参数无关;在实验范围内,火灾载荷对有效覆盖时间影响较小。从灭火时间来看,分区灭火所用时间比未分区的灭火时间有所缩短。从泡沫用量来看,分区灭火方式的泡沫节约量超过60%。在扑灭3 m直径油罐火灾实验中,实验结论与环状油盘实验得出的结果一致,说明分区灭火优势与油罐大小并无明显关联,分区灭火方案具有推广至超大型油罐的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田逢时
薛冉
郑昕
康青春
关键词 超大型油罐分区灭火火灾安全    
Abstract:Fires in very large oil tanks are suppressed by injecting foam into the annular seal ring around the top until the ring is completely filled with foam. However, most of the foam ends up on the unburned area which does not control the fire and results in insufficient supply to the fire region. This paper presents a partition fire extinguishing plan for very large oil tanks that is more efficient and reduces foam use without changing the existing oil tank structure or the fire control system. The scheme was evaluated using an annular oil pan and a small external floating roof oil pan for experimental research on the foam fluidity and partitioned fire control. The results compare the effective covering time, the amount of foam and the fire control time. The results show that the foam spillover into different regions is directly related to the gap width and is not related to the oil pan shape and size. The results also show that the fire control time is shorter when using partitioned areas rather than the unpartitioned design. The partitioned fire control method then reduces the foam use by more than 60%. Experiments with a 3 m diameter oil tank fire are consistent with the results of the annular oil pan experiment, which shows that the advantages of zonal fire control are not related to the tank size and that the partitioned fire control scheme can be applied to very large oil tanks.
Key wordsvery large oil tanks    partitioned fire control    fire    safety
收稿日期: 2020-12-22      出版日期: 2022-01-14
基金资助:国家重点研发计划项目(2020YFC0833402);警察大学校级科研重点专项课题(ZDZX202005)
通讯作者: 郑昕,副研究员,E-mail:zhengxin@tsinghua.edu.cn;康青春,教授,E-mail:kangqingchun@sina.com     E-mail: zhengxin@tsinghua.edu.cn;kangqingchun@sina.com
引用本文:   
田逢时, 薛冉, 郑昕, 康青春. 超大型油罐火灾分区灭火方案及实验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 13-20.
TIAN Fengshi, XUE Ran, ZHENG Xin, KANG Qingchun. Partitioned fire control of very large oil tank fires. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 13-20.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.010  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/13
  
  
  
  
  
  
  
  
  
  
  
  
[1] 宁秀娟. 关于大型浮顶油罐技术的发展研究[J]. 石化技术, 2019, 26(3):236. NING X J. Research on the development of large floating roof tank technology[J]. Petrochemical Industry Technology, 2019, 26(3):236. (in Chinese)
[2] 董欣欣, 田逢时. 超大型油罐火灾定点报警技术应用研究[J]. 消防界, 2020, 6(20):26-28. DONG X X, TIAN F S. Application research on fire alarm technology of super large oil tank[J]. Fire Community, 2020, 6(20):26-28. (in Chinese)
[3] 邱峰. 大型原油储罐火灾事故救援风险研究[D]. 北京:清华大学, 2017. QIU F. Research on the risk of firefighting in large crude oil tank areas considering full-surface pool fire[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[4] MENG X Z, LIU G M, LI C. Study on intelligent fire fighting system for large external floating-roof tank[C]//International Conference on Intelligent Manufacturing and Materials (ICIMM). Guangzhou, China:Destech Publicat Inc., 2016:171-176.
[5] 陶彬, 郎需庆, 张玉平, 等. 外浮顶储罐密封圈爆燃事故防控技术研究[J]. 安全、健康和环境, 2017, 17(7):7-10. TAO B, LANG X Q, ZHANG Y P, et al. Research of prevention and control of fire and explosion accident of open floating roof tanks[J]. Safety Health & Environment, 2017, 17(7):7-10. (in Chinese)
[6] 张良. 浅谈大型原油储罐密封圈火灾的防范[J]. 水上消防, 2014(1):28-30. ZHANG L. Discussion on fire prevention of seal ring of large crude oil storage tank[J]. Marine Fire, 2014(1):28-30. (in Chinese)
[7] 赵金龙, 唐卿, 黄弘, 等. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10):1143-1149. ZHAO J L, TANG Q, HUANG H, et al. Quantitative risk assessment of external floating roof tank areas based on the numerical simulations[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(10):1143-1149. (in Chinese)
[8] PERSSON B, LÖNNERMARK A, PERSSON H. FOAMSPEX:Large scale foam application-modelling of foam spread and extinguishment[J]. Fire Technology, 2003, 39(4):347-362.
[9] 郎需庆, 刘全桢, 宫宏. 大型浮顶储罐灭火系统的研究[J]. 消防科学与技术, 2009, 28(5):342-345. LANG X Q, LIU Q Z, GONG H. Research on the fire-fighting system of the large floating roof tanks[J]. Fire Science and Technology, 2009, 28(5):342-345. (in Chinese)
[10] 王越, 赵强. 对完善当今形势下我国石油储备体系的几点思考[J]. 中国矿业, 2009, 18(10):11-13, 22. WANG Y, ZHAO Q. Thoughts on improve China's petroleum reserves system about new trends[J]. China Mining Magazine, 2009, 18(10):11-13, 22. (in Chinese)
[11] 高美华, 刘细敏. 石化企业原油罐区泡沫灭火系统改造设计[J]. 消防科学与技术, 2018, 37(3):341-344. GAO M H, LIU X M. Reform and design of foam fire extinguishing system in oil tank area of petrochemical enterprises[J]. Fire Science and Technology, 2018, 37(3):341-344. (in Chinese)
[12] 蔡亮, 韩勇, 姜旭, 等. 大型储罐火灾扑救技术现状综述[J]. 石油化工自动化, 2018, 54(6):9-12. CAI L, HAN Y, JIANG X, et al. Review on fire-fighting techniques status of large scale storage tank[J]. Automation in Petro-Chemical Industry, 2018, 54(6):9-12. (in Chinese)
[13] 崔冠雄. 超大型油罐泡沫喷淋管线设计和实验验证[D]. 廊坊:中国人民武装警察部队学院, 2012. CUI G X. Design and experimental verification of foam spray pipe for super large oil tank[D]. Langfang:Chinese People's Armed Police Force Academy, 2012. (in Chinese)
[14] 吴丽光. 大型油罐快速灭火系统关键技术研究[J]. 消防科学与技术, 2018, 37(10):1370-1372. WU L G. Study on key technology of fast fire extinguishing system for large-scale oil tanks[J]. Fire Science and Technology, 2018, 37(10):1370-1372. (in Chinese)
[15] 连旦军. 外浮顶油罐密封圈火灾扑救技术探讨[J]. 消防技术与产品信息, 2017(8):35-38. LIAN D J. Discussion on fire fighting technology of sealing ring of outer floating roof oil tank[J]. Fire Technique and Product Information, 2017(8):35-38. (in Chinese)
[16] ZHAO H, LIU J S. The feasibility study of extinguishing oil tank fire by using compressed air foam system[J]. Procedia Engineering, 2016, 135:61-66.
[17] DEGAEV E, KOROLCHENKO D. Improving fire protection of pontoon tanks or floating roof tanks[J]. Theoretical Foundation of Civil Engineering, 2017, 117(12):00036.
[18] WANG H B, WANG Q Z. Research on design and application of fast extinguishing device of rim seal fire for external floating roof oil tank[C]//2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). Chengdu, China:IEEE Press, 2019:1-7.
[19] 中华人民共和国国家质量监督检验检疫总局, 国家标准化管理委员会. 泡沫灭火剂:GB/T 15308-2006[S]. 北京:中国标准出版社, 2007. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, State Administration of Standardization. Foam extinguishing agent:GB/T 15308-2006[S]. Beijing:Standards Press of China, 2007. (in Chinese)
[20] 康青春, 李玉, 卢立红, 等. 一种油罐火灾报警与灭火系统:CN103505836A[P]. 2014-01-15. KANG Q C, LI Y, LU L H, et al. Fire alarm and fire extinguishing system for oil tank:CN103505836A[P]. 2014-01-15. (in Chinese)
[21] 董希琳, 康青春, 舒中俊, 等. 超大型油罐火灾纵深防控体系构建与实现[J]. 消防科学与技术, 2013, 32(9):1020-1022. DONG X L, KANG Q C, SHU Z J, et al. The construction and implementation of the depth prevention system for large oil tank fire[J]. Fire Science and Technology, 2013, 32(9):1020-1022. (in Chinese)
[22] 张学魁, 闫胜利. 建筑灭火设施[M]. 北京:中国人民公安大学出版社, 2014. ZHANG X K, YAN S L. Building fire prevention facilities[M]. Beijing:Chinese People's Public Security University Press, 2017. (in Chinese)
[23] 中华人民共和国住房和城乡建设部. 泡沫灭火系统设计规范:GB 50151-2010[S]. 北京:中国标准出版社, 2011. Ministry of Housing and Urban Rural Development of the People's Republic of China. Code for design of foam extinguishing systems:GB 50151-2010[S]. Beijing:Standards Press of China, 2011. (in Chinese)
[24] 陈现涛, 孟亚伟, 郭建生, 等. 温度对水成膜泡沫灭火剂性能影响的实验研究[J]. 消防科学与技术, 2017, 36(4):511-514. CHEN X T, MENG Y W, GUO J S, et al. Experimental study on the influence of temperature on the performance of aqueous film-forming foam extinguishing agent[J]. Fire Science and Technology, 2017, 36(4):511-514. (in Chinese)
[25] 李本利, 杨素芳. 火场供水[M]. 北京:中国人民公安大学出版社, 2017. LI B L, YANG S F. Water supply to fire scene[M]. Beijing:Chinese People's Public Security University Press, 2017. (in Chinese)
[26] 李本利, 陈智慧. 消防技术装备[M]. 北京:中国人民公安大学出版社, 2014. LI B L, CHEN Z H. Fire technical equipment[M]. Beijing:Chinese People's Public Security University Press, 2014. (in Chinese)
[1] 孙潇潇, 黄弘, 赵金龙, 章翔, 宋广恒. 有坡度下点源持续泄漏溢油流淌火扩散特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 994-999.
[2] 张晶, 陈涛, 黄丽达, 苏国锋, 孙占辉, 陈建国. 接触不良引发发光连接的动态变化[J]. 清华大学学报(自然科学版), 2022, 62(6): 1000-1009.
[3] 赵永敢, 王淑娟, 李彦, 刘嘉, 禚玉群. 脱硫石膏改良盐碱土技术发展历程与展望[J]. 清华大学学报(自然科学版), 2022, 62(4): 735-745.
[4] 张东成, 强茂山, 江汉臣, 黄钰洁. 大型工程安全隐患管理协作特征挖掘[J]. 清华大学学报(自然科学版), 2022, 62(2): 208-214.
[5] 马琳瑶, 王尧, 黄玥诚, 李鹏程, 方东平. 建设行政主管部门的安全领导力特征及关键维度[J]. 清华大学学报(自然科学版), 2022, 62(2): 221-229.
[6] 孙洪昕, 尤日淳, 唐文哲. 国际工程HSE管理和项目绩效影响因素分析[J]. 清华大学学报(自然科学版), 2022, 62(2): 230-241.
[7] 王冠宁, 陈涛, 米文忠, 梁晓良, 王汝栋. 基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 277-284.
[8] 巴清心, 赵明斌, 赵泽滢, 黄腾, 王建强, 李雪芳, 肖国萍. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
[9] 陈齐垚, 郭飞, 余武江, 郑茂琦, 王太平, 贾晓红, 黄兴. 基于ABAQUS的超低温阀门阀芯偏转密封失效分析[J]. 清华大学学报(自然科学版), 2022, 62(12): 1996-2002.
[10] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网大天顶角工况下结构响应分析[J]. 清华大学学报(自然科学版), 2022, 62(11): 1809-1815,1822.
[11] 郝予琛, 王金华, 王海涛, 刘兵, 李悦. HTR-PM600新燃料贮存容器跌落冲击安全性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1668-1674.
[12] 易佩, 景志滨, 徐飞, 陈磊, 齐军, 姜希伟, 高旭泽. 考虑频率安全约束的电力系统临界惯量计算[J]. 清华大学学报(自然科学版), 2022, 62(10): 1721-1729.
[13] 巴锐, 张宇栋, 刘奕, 张辉. 城市复杂灾害"三层四域"情景分析方法及应用[J]. 清华大学学报(自然科学版), 2022, 62(10): 1579-1590.
[14] 陈俊沣, 程辉航, 魏旋, 温亲玮, 吴乐, 刘畅, 钟茂华. 隧道火灾全尺寸实验中温度测量误差[J]. 清华大学学报(自然科学版), 2022, 62(10): 1618-1625.
[15] 刘畅, 钟茂华, 林鹏, 龚远平, 田向亮, 阴彬, 龙增, 杨宇轩. 水利水电工程分岔型隧道全尺寸火灾实验研究[J]. 清华大学学报(自然科学版), 2022, 62(1): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn