Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 799-808    DOI: 10.16511/j.cnki.qhdxxb.2021.26.018
  试验研究 本期目录 | 过刊浏览 | 高级检索 |
满轲1, 刘晓丽2, 宋志飞1, 郭占峰3, 柳宗旭1, 于云鹤1
1. 北方工业大学 土木工程学院, 北京 100144;
2. 清华大学 水沙科学与水利水电工程国家重点试验室, 北京 100084;
3. 河南省城乡建筑设计院有限公司, 郑州 450002
Macro-micro experimental study of rock static and dynamic fracture toughness
MAN Ke1, LIU Xiaoli2, SONG Zhifei1, GUO Zhanfeng3, LIU Zongxu1, YU Yunhe1
1. College of Civil Engineering, North China University of Technology, Beijing 100144, China;
2. State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, China;
3. Urban and Rural Construction and Designing Institute of Henan Province Co., Ltd., Zhengzhou 450002, China
全文: PDF(15109 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 基于直切槽半圆盘弯曲(notched semi-circle bend,NSCB)试件及断裂韧性测试方法,分别对北京房山花岗岩样品实施了静态和动态断裂韧性试验,获得了其静态与动态断裂韧度的定量关系,发现在文中采用的中高应变率条件下,动态断裂韧度值为静态断裂韧度值的1.3~2.6倍。采用不同表面形貌刻画技术(SEM、激光共聚焦显微镜、高速摄像机等)对破坏岩样的表面形貌进行观测与表征,获得了岩石表面的三维重构及其粗糙度,其静态和动态断裂都是呈I型裂纹拉伸破坏模式,动态与静态裂纹扩展差异的原因在于应力波在岩样内部界面处的来回反射,诱导微裂纹的萌生、汇合与贯通;裂纹传播过程均经历了加速阶段和减速阶段,裂纹传播速度与其表面三维形貌重构的相对高度变化趋势一致,同样与表面粗糙度变化规律相吻合。岩石静态与动态行为的本质区别是:材料在动态加载时所表现出来的率效应(惯性效应),与材料自身由物理、几何引起的结构效应,此两类效应存在相互抵消、此消彼长的本质属性。
E-mail Alert
关键词 静态断裂韧性动态断裂韧性NSCB表面形貌结构效应动态率效应    
Abstract:The notched semi-circle bend (NSCB) specimen and fracture toughness test method was used to measure the static and dynamic fracture toughness of Beijing Fangshan granite samples. The results showed the dynamic fracture toughness is generally 1.3~2.6 times the static fracture toughness for medium and high strain rates. The surface morphologies of the damaged rock samples were then characterized using SEM and a laser confocal microscope for three-dimensional reconstructions of the fractures and surface roughnesses. The static and dynamic fracture modes were both mode I crack tensile failures. The difference between the dynamic and static crack growth was that the stress wave in the dynamic tests reflected back and forth at the internal interface of rock sample which induced micro-cracks and accelerated the convergence and penetration of existing and new cracks. The crack propagation had acceleration and deceleration stages with the changes in the rock crack propagation speed consistent with the relative height of the reconstructed three-dimensional rock surface morphology, which also corresponded to the rock surface roughness variations. The key difference between the static and dynamic behavior is that the rate effect (inertia effect) during dynamic loading tends to counteract the structural effects of the physical and geometric properties of the rock material itself.
Key wordsstatic fracture toughness    dynamic fracture toughness    NSCB    surface morphology    structural effect    dynamic rate effect
收稿日期: 2020-11-12      出版日期: 2021-07-14
满轲, 刘晓丽, 宋志飞, 郭占峰, 柳宗旭, 于云鹤. 岩石静态与动态断裂韧性的宏细观试验[J]. 清华大学学报(自然科学版), 2021, 61(8): 799-808.
MAN Ke, LIU Xiaoli, SONG Zhifei, GUO Zhanfeng, LIU Zongxu, YU Yunhe. Macro-micro experimental study of rock static and dynamic fracture toughness. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 799-808.
链接本文:  或
[1] LIU K, ZHAO J, WU G, et al. Dynamic strength and failure modes of sandstone under biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128:104260.
[2] ZHANG L W, ZHANG X Y, WU J, et al. Rockburst prediction model based on comprehensive weight and extension methods and its engineering application[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9):4891-4903.
[3] OWEN D M, ZHUANG S, ROSAKIS A J, et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets[J]. International Journal of Fracture, 1998, 90(1):153-174.
[4] ZHANG Z X, KOU S Q, YU J, et al. Effects of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5):597-611.
[5] ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture:Fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5):745-762.
[6] SONG B, CHEN W. Energy for specimen deformation in a split Hopkinson pressure bar experiment[J]. Experimental Mechanics, 2006, 46(3):407-410.
[7] IQBAL M J, MOHANTY B. Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8):1270-1276.
[8] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1):93-106.
[9] NASSERI M H B, MOHANTY B. Fracture toughness anisotropy in granitic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2):167-193.
[10] GU H L, TAO M, LI X B, et al. Dynamic response and meso-deterioration mechanism of water-saturated sandstone under different porosities[J]. Measurement, 2021, 167:108275.
[11] ZHOU X P, WANG L F, SHOU Y D. Understanding the fracture mechanism of ring Brazilian discspecimens by the phase field method[J]. International Journal of Fracture, 2020, 226(1):17-43.
[12] ALIHA M R M, AYATOLLAHI M R. Two-parameter fracture analysis of SCB rock specimen under mixed mode loading[J]. Engineering Fracture Mechanics, 2013, 103:115-123.
[13] ALIHA M R M, MAHDAVI E, AYATOLLAHI M R. Statistical analysis of rock fracture toughness data obtained from different chevron notched and straight cracked mode I specimens[J]. Rock Mechanics and Rock Engineering, 2018, 51(7):2095-2114.
[14] ALIHA M R M, BAHMANI A. Rock fracture toughness study under mixed mode I/III loading[J]. Rock Mechanics and Rock Engineering, 2017, 50(7):1739-1751.
[15] ALIHA M R M, HOSSEINPOUR G R, AYATOLLAHI M R. Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials[J]. Rock Mechanics and Rock Engineering, 2013, 46(5):1023-1034.
[16] ALIHA M R M, AYATOLLAHI M R, AKBARDOOST J. Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material[J]. Rock Mechanics and Rock Engineering, 2012, 45(1):65-74.
[17] CHEN C S, PAN E N, AMADEI B. Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2):195-218.
[18] NASSERI M H B, MOHANTY B, YOUNG R P. Fracture toughness measurements and acoustic emission activity in brittle rocks[J]. Pure and Applied Geophysics, 2006, 163(5-6):917-945.
[19] CHEN R, XIA K, DAI F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing[J]. Engineering Fracture Mechanics, 2009, 76(9):1268-1276.
[20] ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble[J]. Engineering Fracture Mechanics, 2013, 102:288-309.
[21] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60:423-439.
[22] ZHOU X P, QIAN Q H, YANG H Q. Effect of loading rate on fracture characteristics of rock[J]. Journal of Central South University of Technology, 2010, 17(1):150-155.
[23] FOWELL R J. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1):57-64.
[24] Freund L B. Dynamic fracture mechanics[M]. Cambridge:Cambridge University Press, 1998.
[25] AYATOLLAHI M R. Response of an orthotropic half-plane subjected to transient anti-plane loading with multiple edge cracks[J]. Journal of Physics:Conference Series, 2017, 843:012015.
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持