Semi-analytical algorithm for computing satellite-area target visibility
ZHANG Zhong1, E Zhibo1, HUANG Lixia2, LI Junfeng1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; 2. China Aerospace Science and Technology Corporation, Beijing 100084, China
Abstract:Computing the visibility of remote sensing satellites on an area target is an important basic satellite observation mission. The calculational accuracy and efficiency are then very important for satellite imaging scheduling. This paper presents a fast, semi-analytical algorithm for predicting satellite-area target visibility. First, geometric relations are used to define the boundaries of all the area targets described by ordinary arcs with the algorithm then determining the intersections. Then, the cone characteristics and the rectangular field of view of the satellite are used with a fast judgement condition for the visibility. The visibility at each discrete time step is determined analytically with a binary search which is then used to quickly predict the time for the visible window. Numerical examples show that this method is accurate and efficient. The relative error in the visibility duration is 0.1% relative to the predictions of the commercial software STK while the calculational speed is 105 times faster than the brute force method and almost 1 000 times faster than the average speed of the existing fast calculation algorithms.
[1] VOIGT S, GIULIO-TONOLO F, LYONS J, et al. Global trends in satellite-based emergency mapping[J]. Science, 2016, 353(6296):247-252. [2] LIN W C, LIAO D Y, LIU C Y, et al. Daily imaging scheduling of an Earth observation satellite[J]. IEEE Transactions on Systems Man & Cybernetics Part A Systems & Humans, 2005, 35(2):213-223. [3] ZHU K J, LI J F, BAOYIN H X. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost[J]. Acta Astronautica, 2010, 66(1-2):220-229. [4] XU Y, LIU X, HE R, et al. Multi-satellite scheduling framework and algorithm for very large area observation[J]. Acta Astronautica, 2020, 167:93-107. [5] 甘岚, 龚胜平. 机动卫星星座对多目标成像任务规划[J]. 清华大学学报(自然科学版), 2021, 61(3):240-247. GAN L, GONG S P. Observation mission planning for maneuverable satellite constellations towards multiple target[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(3):240-247. (in Chinese) [6] E Z B, SHI R, GAN L, et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178:645-657. [7] LAWTON J A. Numerical method for rapidly determining satellite-satellite and satellite-ground station in-view periods[J]. Journal of Guidance Control and Dynamics, 1987, 10(1):32-36. [8] ALFANO S, NEGRON J D, MOORE J L. Rapid determination of satellite visibility periods[J]. Journal of the Astronautical Sciences, 1992, 40(2):17. [9] ALI I, AL D N, HERSHEY J E. Predicting the visibility of LEO satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4):1183-1190. [10] MAI Y, PALMER P. Fast algorithm for prediction of satellite imaging and communication opportunities[J]. Journal of Guidance Control & Dynamics, 2001, 24(6):1118-1124. [11] WU S F, PALMER P L. Fast prediction algorithms of satellite imaging opportunities with attitude controls[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):796-803. [12] HAN C, GAO X J, SUN X C. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique[J]. Science China Technological Sciences, 2017, 60(2):264-270. [13] 张锦绣, 曹喜滨, 林晓辉. 卫星过顶与成像区域时间的快速预报算法研究[J]. 哈尔滨工业大学学报, 2006, 38(4):514-516. ZHANG J X, CAO X B, LIN X H. Fast algorithm for prediction of satellite passes and image opportunity[J]. Journal of HarBin Institute of Technology, 2006, 38(4):514-516. (in Chinese) [14] 李冬, 唐容富, 易东云. 对地观测卫星访问区域目标时间窗口快速算法[J]. 上海航天, 2010, 27(3):1-5. LI D, TANG R F, YI D Y. The fast algorithm for time windows of area target observation using earth observation satellites[J]. Aerospace Shanghai, 2010, 27(3):1-5. (in Chinese) [15] 宋志明, 戴光明, 王茂才, 等. 卫星对区域目标的时间窗口快速计算方法[J]. 计算机仿真, 2014, 31(9):61-66.SONG Z M, DAI G M. WANG M C, et al. Fast predicting algorithm for satellites time windows to ground area target[J]. Computer Simulation. 2014, 31(9):61-66. (in Chinese) [16] 卢万杰, 徐青, 蓝朝桢, 等. 卫星对地覆盖时间窗口实时计算方法[J]. 地球信息科学学报, 2019, 21(11):1689-1698. LU W J, XU Q, LAN C Z, et al. A real-time calculation method for satellite ground coverage time window[J]. Journal of Geo-information Science, 2019, 21(11):1689-1698. (in Chinese) [17] 汪荣峰. 卫星时间窗口计算的动态步长快速算法[J]. 计算机与数字工程, 2020, 48(3):590-595. WANG R F. Fast algorithm for calculation of the satellite time windows based on dynamic step[J]. Computer & Digital Engineering, 2020, 48(3):590-595. (in Chinese) [18] 张玮, 王守斌, 程承旗, 等. 一种基于网格的卫星访问区域目标的时间窗口快速计算方法[J]. 地理信息世界, 2018, 25(6):5-11. ZHANG W, WANG S B, CHENG C Q, et al. An efficient method for time window of satellite access area target based on subdivision grids[J]. Geomatics World, 2018, 25(6):5-11. (in Chinese) [19] 鄂智博, 李俊峰. 遥感卫星对区域目标可见性的快速计算方法[J]. 清华大学学报(自然科学版), 2019, 59(9):699-704. E Z B, LI J F. Fast simulation algorithm for area target visibility using remote sensing satellites[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(9):699-704. (in Chinese)