Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 614-626    DOI: 10.16511/j.cnki.qhdxxb.2021.26.021
  经济与公共管理 本期目录 | 过刊浏览 | 高级检索 |
基于面板数据回归模型的家庭水-能消费时空特征与影响因素
王春艳1, 张景翔2, 龙洁1, 刘毅1
1. 清华大学 环境学院, 北京 100084;
2. 清华大学 工业工程系, 北京 100084
Panel data regression model for identifying the spatiotemporal characteristics and key factors influencing household water-energy consumption
WANG Chunyan1, ZHANG Jingxiang2, LONG Jie1, LIU Yi1
1. School of Environment, Tsinghua University, Beijing 100084, China;
2. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3527 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用描述性分析、相关性分析以及针对面板数据回归的随机效应模型分析,基于中国家庭追踪调查数据集,以2014-2018年追踪的4 269户家庭为样本,根据其月度家庭用水量、用电量以及家庭属性数据对家庭水-能消费特征和影响因素开展定量研究。结果表明:家庭用水量、用电量随时间逐渐增大,相比于2014年,2018年的月用电量、用水量分别提高了21%和12%;地区差异性显著,其中华南地区用水量、用电量最高,西北地区户均用电量最少,华北地区户均用水量最少。家庭用水量、用电量存在正向相关性,相关系数为0.49;不同地区用水量和用电量的相关性差异较大,华南地区相关性最强,华中地区相关性最弱。家庭经济属性变量、居住属性变量对用水量、用电量存在显著影响;家庭规模、住房市价对用水量、用电量存在正向影响,其中家庭规模每增加1人,用电量提高7.5%,用水量提高7.1%;住房市价每提高1倍,家庭用电量提高1.3%,家庭用水量提高1.2%;价格对用水量存在负向影响,价格每上升1.0元,用水量降低13.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王春艳
张景翔
龙洁
刘毅
关键词 家庭水-能消费时空特征固定效应模型影响因素    
Abstract:The China family panel studies (CFPS) tracked the monthly household water and electricity consumption of 4 269 households from 2014 to 2018. The present study analyzed the household water and energy consumption characteristics to identify key factors influencing their water and energy use using descriptive analyses, correlation analyses and a random effect model based on a panel data regression. The results show that the household water and electricity consumption gradually increased with time with the monthly electricity in 2018 being 21% higher than in 2014 while the water consumption increased by 12%. The water and electricity consumption rates differed in different regions of China with southern China having the highest consumption rates, northwest China having the lowest consumption rates and northern China having the lowest water consumption rate. The household water and electricity consumption rates are positively correlated with a correlation coefficient of 0.49. The correlation was strongest in southern China and weakest in central China. The household economic and dwelling attributes significantly influence the water and electricity consumption. The household water and electricity consumption also correlate with the household size and house price with each increase in family size increasing the electricity consumption by 7.5% and the water consumption by 7.1%. Doubling the house price increases the electricity consumption by 1.3% and the water consumption by 1.2%. Price has a negative impact on water consumption with the water consumption decreasing by 13.9% for each 1.0 yuan increase in price.
Key wordshousehold water-electricity consumption    spatiotemporal characteristics    fixed effects model    influencing factors
收稿日期: 2021-01-22      出版日期: 2022-03-10
基金资助:刘毅,教授,E-mail:yi.liu@tsinghua.edu.cn
引用本文:   
王春艳, 张景翔, 龙洁, 刘毅. 基于面板数据回归模型的家庭水-能消费时空特征与影响因素[J]. 清华大学学报(自然科学版), 2022, 62(3): 614-626.
WANG Chunyan, ZHANG Jingxiang, LONG Jie, LIU Yi. Panel data regression model for identifying the spatiotemporal characteristics and key factors influencing household water-energy consumption. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 614-626.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.021  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/614
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王文蝶, 牛叔文, 齐敬辉, 等. 中国城镇化进程中生活能源消费与收入的关联及其空间差异分析[J]. 资源科学, 2014, 36(7):1434-1441. WANG W D, NIU S W, QI J H, et al. The correlation and spatial differences between residential energy consumption and income in China[J]. Resources Science, 2014, 36(7):1434-1441. (in Chinese)
[2] ZOU B L, LUO B L. Rural household energy consumption characteristics and determinants in China[J]. Energy, 2019, 182(9):814-823.
[3] 李宗泰, 李华, 肖红波, 等. 北京农村生活能源消费结构及影响因素分析[J]. 生态经济, 2017, 33(12):101-104. LI Z T, LI H, XIAO H B, et al. Analysis of energy consumption structure and its influencing factors in rural areas of Beijing[J]. Ecological Economy, 2017, 33(12):101-104. (in Chinese)
[4] 王月菊, 陈文江, 李勇进, 等. 人口、户数和家庭规模变动对资源消耗的影响分析:基于IPAT等式和结构分解分析模型[J]. 生态经济, 2015, 31(6):23-27. WANG Y J, CHEN W J, LI Y J, et al. The impact of population, household, and family scale on resource consumption:An analysis based on IPAT equation and SDA model[J]. Ecological Economy, 2015, 31(6):23-27. (in Chinese)
[5] 米红, 任正委. 家庭户电力消费的年龄性别模式与节电减排的政策选择[J]. 人口研究, 2014, 38(4):37-49. MI H, REN Z W. Age-gender pattern in household electricity consumption and policy implications for electricity conservation and emission reduction[J]. Population Research, 2014, 38(4):37-49. (in Chinese)
[6] ZHOU S J, TENG F. Estimation of urban residential electricity demand in China using household survey data[J]. Energy Policy, 2013, 61(10):394-402.
[7] 姚建平. 城乡家庭电力能源消费研究:基于北京、上海和广东的比较[J]. 电力与能源, 2015, 36(2):129-134. YAO J P. Household electricity consumption in urban and rural China:Comparison among Beijing, Shanghai and Guangdong[J]. Power & Energy, 2015, 36(2):129-134. (in Chinese)
[8] HUANG W H. The determinants of household electricity consumption in Taiwan:Evidence from quantile regression[J]. Energy, 2015, 87(7):120-133.
[9] LI L, ARARAL E, JEULAND M. The drivers of household drinking water choices in Singapore:Evidence from multivariable regression analysis of perceptions and household characteristics[J]. Science of the Total Environment, 2019, 671(6):1116-1124.
[10] 赵卫华. 居民家庭用水量影响因素的实证分析:基于北京市居民用水行为的调查数据考察[J]. 干旱区资源与环境, 2015, 29(4):137-142. ZHAO W H. Empirical study on the water consumption behavior and its influences on the domestic water use:Based on the data collected in Beijing[J]. Journal of Arid Land Resources and Environment, 2015, 29(4):137-142. (in Chinese)
[11] 胡振, 柳燕, 李迎峰. 家庭规模对生活基础用水分布特性的影响:基于中国城市居民家庭消费金融调查[J]. 人口与经济, 2019(5):106-116. HU Z, LIU Y, LI Y F. Research on water distribution characteristics used by basic domestic related to the family size:Financial survey on household consumption in urban China[J]. Population & Economics, 2019(5):106-116. (in Chinese)
[12] 沈恬, 陈远生, 杨琪. 城市家庭用水能耗强度及其影响因素分析[J]. 资源科学, 2015, 37(4):744-753. SHEN T, CHEN Y S, YANG Q. Energy consumption in urban household water use and influencing factors[J]. Resources Science, 2015, 37(4):744-753. (in Chinese)
[13] 章恒全, 高圆, 张陈俊. 城镇化进程中水资源消耗的影响因素研究[J]. 水利经济, 2020, 38(1):36-41, 48. ZHANG H Q, GAO Y, ZHANG C J. Factorsinfluencing water consumption in the process of urbanization[J]. Journal of Economics of Water Resources, 2020, 38(1):36-41, 48. (in Chinese)
[14] GRAFTON R Q, WARD M B, TO H, et al. Determinants of residential water consumption:Evidence and analysis from a 10-country household survey[J]. Water Resources Research, 2011, 47(8):W08537.
[15] DIEU-HANG T, GRAFTON R Q, MARTÍNEZ-ESPIÑEIRA R, et al. Household adoption of energy and water-efficient appliances:An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries[J]. Journal of Environmental Management, 2017, 197(7):140-150.
[16] ESCRIVA-BOU A, LUND J R, PULIDO-VELAZQUEZ M. Modeling residential water and related energy, carbon footprint and costs in California[J]. Environmental Science & Policy, 2015, 50(6):270-281.
[17] YU M, WANG C R, LIU Y, et al. Water and related electrical energy use in urban households-influence of individual attributes in Beijing, China[J]. Resources, Conservation and Recycling, 2018, 130(3):190-199.
[18] KENWAY S J, BINKS A, LANE J, et al. A systemic framework and analysis of urban water energy[J]. Environmental Modelling & Software, 2015, 73(11):272-285.
[19] 毕博, 陈丹, 邓鹏, 等. 区域水资源-能源-粮食系统耦合协调演化特征研究[J]. 中国农村水利水电, 2018(2):72-77. BI B, CHEN D, DENG P, et al. The evolutionary characteristics analysis of coupling and coordination of regional water-energy-food[J]. China Rural Water and Hydropower, 2018(2):72-77. (in Chinese)
[20] 鲍淑君, 贾仰文, 高学睿, 等. 水资源与能源纽带关系国际动态及启示[J]. 中国水利, 2015(11):6-9. BAO S J, JIA Y W, GAO X R, et al. Trend and inspiration of water and energy nexus[J]. China Water Resources, 2015(11):6-9. (in Chinese)
[21] JIANG S, WANG J H, ZHAO Y, et al. Residential water and energy nexus for conservation and management:A case study of Tianjin[J]. International Journal of Hydrogen Energy, 2016, 41(35):15919-15929.
[22] ABDALLAH A M, ROSENBERG D E. Heterogeneous residential water and energy linkages and implications for conservation and management[J]. Journal of Water Resources Planning and Management, 2014, 140(3):288-297.
[23] BINKS A N, KENWAY S J, LANT P A, et al. Understanding Australian household water-related energy use and identifying physical and human characteristics of major end uses[J]. Journal of Cleaner Production, 2016, 135(11):892-906.
[24] JONES R V, FUERTES A, LOMAS K J. The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings[J]. Renewable and Sustainable Energy Reviews, 2015, 43(3):901-917.
[25] LUONG N D, HA U T T, HUNG P T, et al. Investigating urban household water-energy nexus towards supporting sustainable and smart city policies:The case of Hanoi City, Vietnam[J]. IOP Conference Series Materials Science and Engineering, 2020, 869:022033.
[26] WIESMANN D, AZEVEDO I L, FERRÃO P, et al. Residential electricity consumption in Portugal:Findings from top-down and bottom-up models[J]. Energy Policy, 2011, 39(5):2772-2779.
[27] 陈强. 计量经济学及Stata应用[M]. 北京:高等教育出版社, 2015. CHEN Q. Econometrics and stata applications[M]. Beijing:Higrer Education Press, 2015. (in Chinese)
[28] 王雅晴, 谭德明, 张佳田, 等. 我国城市发展与能源碳排放关系的面板数据分析[J]. 生态学报, 2020, 40(21):7897-7907. WANG Y Q, TAN D M, ZHANG J T, et al. The impact of urbanization on carbon emissions:Analysis of panel data from 158 cities in China[J]. Acta Ecologica Sinica, 2020, 40(21):7897-7907. (in Chinese)
[29] BAYART J B, BULLE C, DESCHÊNES L, et al. A framework for assessing off-stream freshwater use in LCA[J]. International Journal of Life Cycle Assessment, 2010, 15(5):439-453.
[30] 崔慧珊, 邓逸群. 居民用水量的影响因素研究评述[J]. 水资源保护, 2009, 25(1):83-85. CUI H S, DENG Y Q. Factors influencing residential water consumption[J]. Water Resources Protection, 2009, 25(1):83-85. (in Chinese)
[31] 万文玉, 赵雪雁, 王伟军. 中国城市居民生活能源碳排放的时空格局及影响因素分析[J]. 环境科学学报, 2016, 36(9):3445-3455. WAN W Y, ZHAO X Y, WANG W J. Spatial-temporal patterns and impact factors analysis on carbon emissions from energy consumption of urban residents in China[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3445-3455. (in Chinese)
[1] 郭飞, 程甘霖, 张兆想, 黄兴, 贾晓红. 聚合物软材料磨损硬质材料机理研究进展[J]. 清华大学学报(自然科学版), 2021, 61(6): 643-652.
[2] 丁莹, 张健钦, 杨木, 宫鹏, 贾礼朋, 邓少存. 新冠疫情发生城市仿真模型及防控措施评价——以武汉市为例[J]. 清华大学学报(自然科学版), 2021, 61(12): 1452-1461.
[3] 王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692.
[4] 王守清, 牛耘诗, 伍迪, 褚晓凌. PPP项目控制权配置影响因素及合理配置原则[J]. 清华大学学报(自然科学版), 2019, 59(8): 663-669.
[5] 湛社霞, 匡耀求, 阮柱. 基于灰色关联度的粤港澳大湾区空气质量影响因素分析[J]. 清华大学学报(自然科学版), 2018, 58(8): 761-767.
[6] 王茵田, 文志瑛. 向下修正条款对中国可转债定价的影响[J]. 清华大学学报(自然科学版), 2018, 58(1): 108-112.
[7] 李华, 赵原, 刘立业, 肖运实, 李君利. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 525-529.
[8] 王磊, 匡麟玲, 黄惠明. 基于时空特征的中继卫星系统业务模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 55-60,66.
[9] 邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn