Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 1-12    DOI: 10.16511/j.cnki.qhdxxb.2021.26.024
  专题:防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
水利水电工程分岔型隧道全尺寸火灾实验研究
刘畅1, 钟茂华1, 林鹏2, 龚远平3, 田向亮4, 阴彬3, 龙增1, 杨宇轩1
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 清华大学 水利水电工程系, 北京 100084;
3. 中国三峡建工(集团)有限公司, 宁南 615421;
4. 中国安全生产科学研究院, 北京 100012
Full-scale experimental study of a bifurcated tunnel fire in a hydropower engineering project
LIU Chang1, ZHONG Maohua1, LIN Peng2, GONG Yuanping3, TIAN Xiangliang4, YIN Bin3, LONG Zeng1, YANG Yuxuan1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China;
3. China Three Gorges Construction Engineering Corporation, Ningnan 615421, China;
4. China Academy of Safety Science and Technology, Beijing 100012, China
全文: PDF(4359 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为研究水利水电工程洞室群连接节点的火灾烟气蔓延特性,在某水电站地下洞室分岔型隧道开展全尺寸现场实验,通过分析各隧道区段温度分布、烟气层高度等参数并结合现场观测,研究烟气由分岔节点向连接隧道的扩散和沉降规律。结果表明:分岔隧道火灾危险性受坡度结构和通风条件的影响,起火位置上风向隧道烟气温度稳定衰减且分层作用明显;下风向隧道烟气与空气的掺混破坏了烟气稳定分层结构,烟气沉降加剧并形成趋于均一的竖向温度分布,上坡结构导致烟气沉降作用更为明显,2#隧道中3 m高度以下的烟气温度沿纵向反而呈现升高趋势。防排烟设计中应综合考虑不同隧道区段火灾危险的差异性,在实验火灾规模下,上风向隧道烟气层高度保持在4.2 m,下风向低温烟气区域面临较高危险性,烟气层高度均降低至1.5 m以下;2#隧道的上坡结构进一步加剧了烟气沉降,起火2 min后即降低至0.8 m以下,是烟气控制和火灾应急中应考虑的重点区域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
钟茂华
林鹏
龚远平
田向亮
阴彬
龙增
杨宇轩
关键词 水利水电工程分岔隧道火灾全尺寸实验烟气扩散    
Abstract:Full-scale experiments in a bifurcated tunnel in a hydropower station with a fire source at the junction area were conducted to investigate fire-induced smoke spread characteristics in connected regions. The spread and descent of smoke in each tunnel were studied by analyzing the temperature profiles and smoke layer heights coupled with on-site observations. The results show that the slope and ventilation strongly affect the smoke risks in each tunnel with the smoke temperature steadily decreasing with distinct stratification upwind of the fire source. The smoke and fresh air mixture flow disrupted the smoke stratification and caused the smoke level to lower in the tunnel with the vertical temperature distribution becoming more uniform. Moreover, the aggravation of smoke deposition in the uphill direction in tunnel 2# increased the smoke temperature in the longitudinal direction below 3 m. The different fire risks in different tunnel sections should be carefully considered in smoke control designs. For the present fire heat release rate, the smoke layer height remained at 4.2 m in the upstream tunnel, while the downstream tunnels faced higher risks that the smoke layer descending below 1.5 m. The uphill slope in tunnel 2# increased the smoke descent with the smoke height decreasing to 0.8 m after 2 min, which should be considered in smoke control designs and fire emergency.
Key wordshydropower engineering    bifurcated tunnel    fire    full-scale experiment    smoke propagation
收稿日期: 2021-02-08      出版日期: 2022-01-14
基金资助:国家自然科学基金资助项目(72091512)
通讯作者: 钟茂华,研究员,E-mail:mhzhong@tsinghua.edu.cn     E-mail: mhzhong@tsinghua.edu.cn
引用本文:   
刘畅, 钟茂华, 林鹏, 龚远平, 田向亮, 阴彬, 龙增, 杨宇轩. 水利水电工程分岔型隧道全尺寸火灾实验研究[J]. 清华大学学报(自然科学版), 2022, 62(1): 1-12.
LIU Chang, ZHONG Maohua, LIN Peng, GONG Yuanping, TIAN Xiangliang, YIN Bin, LONG Zeng, YANG Yuxuan. Full-scale experimental study of a bifurcated tunnel fire in a hydropower engineering project. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 1-12.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.024  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/1
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] DAVID M B, THOMAS V, HARLEY G, 等. 应急响应:美国底特律水电站火灾灾后恢复的经验教训[J]. 邱祥兴, 译. 大坝与安全, 2017(3):70-74. DAVID M B, THOMAS V, HARLEY G, et al. Emergency response:Lessons learned during recovery from a fire in the Detroit powerhouse[J]. QIU X X, trans. Dam & Safety, 2017(3):70-74. (in Chinese)
[2] 中国新闻网. 印度一水电站发生大火致9人死亡[EB/OL]. (2020-08-21)[2021-02-07]. https://www.chinanews.com/gj/2020/08-21/9271344.shtml. China News. Nine people died in the fire at the hydropower station in India[EB/OL]. (2020-08-21)[2021-02-07]. https://www.chinanews.com/gj/2020/08-21/9271344.shtml. (in Chinese)
[3] 国家能源局. 2020年3月事故通报[EB/OL]. (2020-05-18)[2021-02-07]. http://www.nea.gov.cn/2020-05/18/c_139066546.htm. National Energy Administration. Accident report in March 2020[EB/OL]. (2020-05-18)[2021-02-07]. http://www.nea.gov.cn/2020-05/18/c_139066546.htm. (in Chinese)
[4] HURLEY M J, GOTTUK D T, HALL J R, et al. SFPE handbook of fire protection engineering[M]. New York:Springer, 2016.
[5] HU L H, HUO R, LI Y Z, et al. Full-scale burning tests on studying smoke temperature and velocity along a corridor[J]. Tunnelling and Underground Space Technology, 2005, 20(3):223-229.
[6] 中国安全生产科学研究院. 广州市轨道交通五号线工程东圃站-三溪站区间试运营前安全评价报告[R]. 北京:中国安全生产科学研究院, 2009. China Academy of Safety Science and Technology. Report on Safety evaluation before trial operation of Dongpu-Sanxi interval tunnel in Guangzhou Rail Transit Line 5 project[R]. Beijing:China Academy of Safety Science and Technology, 2009. (in Chinese)
[7] TONG Y, SHI M H, GONG Y F, et al. Full-scale experimental study on smoke flow in natural ventilation road tunnel fires with shafts[J]. Tunnelling and Underground Space Technology, 2009, 24(6):627-633.
[8] KASHEF A, SABER H H, GAO L X. Optimization of emergency ventilation strategies in a roadway tunnel[J]. Fire Technology, 2011, 47(4):1019-1046.
[9] LIU Z G, KASHEF A H, LOUGHEED G D, et al. Investigation on the performance of fire detection systems for tunnel applications-Part 2:Full-scale experiments under longitudinal airflow conditions[J]. Fire Technology, 2011, 47(1):191-220.
[10] WENG M C, YU L X, LIU F, et al. Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal[J]. Tunnelling and Underground Space Technology, 2014, 42:96-104.
[11] ZHOU T N, HE Y P, LIN X, et al. Influence of constraint effect of sidewall on maximum smoke temperature distribution under a tunnel ceiling[J]. Applied Thermal Engineering, 2017, 112:932-941.
[12] 钟茂华, 刘畅, 史聪灵. 地铁火灾全尺寸实验研究进展综述[J]. 中国安全科学学报, 2019, 29(10):51-63. ZHONG M H, LIU C, SHI C L. Progress of full-scale experimental study on metro fire[J]. China Safety Science Journal, 2019, 29(10):51-63. (in Chinese)
[13] LIU C, ZHONG M H, SHI C L, et al. Temperature profile of fire-induced smoke in node area of a full-scale mine shaft tunnel under natural ventilation[J]. Applied Thermal Engineering, 2017, 110:382-389.
[14] HUANG Y B, LI Y F, LI J M, et al. Modelling and experimental investigation of critical velocity and driving force for preventing smoke backlayering in a branched tunnel fire[J]. Tunnelling and Underground Space Technology, 2020, 99:103388.
[15] LEI P, CHEN C K, ZHANG Y L, et al. Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations[J]. International Journal of Thermal Sciences, 2021, 159:106631.
[16] LI P, YANG D. Prevention of multiple patterns of combined buoyancy-and pressure-driven flow in longitudinally ventilated sloping multi-branch traffic tunnel fires[J]. Tunnelling and Underground Space Technology, 2020, 103:103498.
[17] LIU C, ZHONG M H, SONG S Y, et al. Experimental and numerical study on critical ventilation velocity for confining fire smoke in metro connected tunnel[J]. Tunnelling and Underground Space Technology, 2020, 97:103296.
[18] LI A G, ZHANG Y, HU J, et al. Reduced-scale experimental study of the temperature field and smoke development of the bus bar corridor fire in the underground hydraulic machinery plant[J]. Tunnelling and Underground Space Technology, 2014, 41:95-103.
[19] ZHANG Y, LI A G, HU J, et al. Prediction of carbon monoxide concentration and optimization of the smoke exhaust system in a busbar corridor[J]. Building Simulation, 2014, 7(6):639-648.
[20] SHAO S, YANG X G, ZHOU J W. Numerical analysis of different ventilation schemes during the construction process of inclined tunnel groups at the Changheba Hydropower Station, China[J]. Tunnelling and Underground Space Technology, 2016, 59:157-169.
[21] HUANG L, MA J Y, LI A G, et al. Scale modeling experiments of fire-induced smoke and extraction via mechanical ventilation in an underground hydropower plant[J]. Sustainable Cities and Society, 2019, 44:536-549.
[22] 李安桂, 李光华. 水电工程地下高大厂房通风空调气流组织及缩尺模型试验进展[J]. 暖通空调, 2015, 45(2):1-9. LI A G, LI G H. Advancement about ventilation air distribution and reduced-scale model test for underground large plants in hydropower stations[J]. Heating Ventilating & Air Conditioning, 2015, 45(2):1-9. (in Chinese)
[23] ZHONG M H, SHI C L, HE L, et al. Full-scale experimental research on fire fume refluence of sloped long and large curved tunnel[J]. Science China Technological Sciences, 2011, 54(S1):89-94.
[24] ZHONG M H, SHI C L, HE L, et al. Smoke development in full-scale sloped long and large curved tunnel fires under natural ventilation[J]. Applied Thermal Engineering, 2016, 108:857-865.
[25] LIU C, TIAN X L, ZHONG M H, et al. Full-scale experimental study on fire-induced smoke propagation in large underground plant of hydropower station[J]. Tunnelling and Underground Space Technology, 2020, 103:103447.
[26] 中华人民共和国交通运输部. 公路隧道设计规范第一册土建工程:JTG 3370.1-2018[S]. 北京:人民交通出版社, 2019. Ministry of Transport of the People's Republic of China. Specifications for design of highway tunnels, section 1, civil engineering:JTG 3370.1-2018[S]. Beijing:China Communications Press, 2019. (in Chinese)
[27] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 地铁设计规范:GB 50157-2013[S]. 北京:中国建筑工业出版社, 2014. Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design of metro:GB 50157-2013[S]. Beijing:China Architecture Publishing & Media Co., Ltd., 2014. (in Chinese)
[28] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑防烟排烟系统技术标准:GB 51251-2017[S]. 北京:中国计划出版社, 2017. Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical standard for smoke management systems in buildings:GB 51251-2017[S]. Beijing:China Planning Press Co., Ltd., 2017. (in Chinese)
[29] YAN Z G, GUO Q H, ZHU H H. Full-scale experiments on fire characteristics of road tunnel at high altitude[J]. Tunnelling and Underground Space Technology, 2017, 66:134-146.
[30] 易亮, 霍然, 张靖岩, 等. 柴油油池火功率特性[J]. 燃烧科学与技术, 2006, 12(2):164-168. YI L, HUO R, ZHANG J Y, et al. Characteristics of heat release rate of diesel oil pool fire[J]. Journal of Combustion Science and Technology, 2006, 12(2):164-168. (in Chinese)
[31] FERRERO F, MUÑOZ M, KOZANOGLU B, et al. Experimental study of thin-layer boilover in large-scale pool fires[J]. Journal of Hazardous Materials, 2006, 137(3):1293-1302.
[32] 杨君涛. 油罐火灾的数值模拟与实验研究[D]. 天津:天津大学, 2005. YANG J T. Numerical simulation and experimental study on oil tank fire[D]. Tianjin:Tianjin University, 2005. (in Chinese)
[33] NFPA. Guide for smoke management systems in malls, atria, and large areas:NFPA 92B-2009[S]. Quincy:National Fire Protection Association, 2009.
[34] 赵红莉, 徐志胜, 李洪, 等. 坡度对隧道火灾烟气温度分布的影响[J]. 中南大学学报(自然科学版), 2013, 44(10):4257-4263. ZHAO H L, XU Z S, LI H, et al. Impact of slope on smoke temperature distribution in tunnel fires[J]. Journal of Central South University (Science and Technology), 2013, 44(10):4257-4263. (in Chinese)
[1] 贺胜, 疏学明, 胡俊, 张雷, 张伽, 张嘉乐, 周扬. 基于消防大数据的电气火灾风险预测预警方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 478-491.
[2] 赵金龙, 李浩源, 张清元, 杨钧晖, 田畅, 疏学明. 用于液体火灾的环保泡沫制备方法与关键参数[J]. 清华大学学报(自然科学版), 2024, 64(3): 502-508.
[3] 贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
[4] 田逢时, 孙占辉, 郑昕, 尹燕福. 城市消防警情的空间异质性及影响因素[J]. 清华大学学报(自然科学版), 2023, 63(6): 888-899.
[5] 李开远, 袁宏永, 陈涛, 黄丽达. 基于TDLAS的光学探针式初期火灾探测系统[J]. 清华大学学报(自然科学版), 2023, 63(6): 910-916.
[6] 岳顺禹, 龙增, 仇培云, 钟茂华, 华福才. 独头隧道火灾全尺寸实验研究[J]. 清华大学学报(自然科学版), 2023, 63(6): 917-925.
[7] 姜文宇, 王飞, 苏国锋, 乔禹铭, 李鑫, 权威. 基于元胞自动机的以火灭火动态建模方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 926-933.
[8] 胡俊, 疏学明, 解学才, 颜峻, 张雷. 基于定量风险评估的建筑火灾保险费率[J]. 清华大学学报(自然科学版), 2023, 63(5): 775-782.
[9] 刘智远, 李行, 周汛. 送风环境下地铁车厢火灾温度分布[J]. 清华大学学报(自然科学版), 2023, 63(10): 1529-1536.
[10] 黄跃群, 刘耀儒, 许文彬, 黎军锋. 水利水电工程全生命周期碳排放研究——以犬木塘工程为例[J]. 清华大学学报(自然科学版), 2022, 62(8): 1366-1373.
[11] 孙潇潇, 黄弘, 赵金龙, 章翔, 宋广恒. 有坡度下点源持续泄漏溢油流淌火扩散特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 994-999.
[12] 张晶, 陈涛, 黄丽达, 苏国锋, 孙占辉, 陈建国. 接触不良引发发光连接的动态变化[J]. 清华大学学报(自然科学版), 2022, 62(6): 1000-1009.
[13] 王冠宁, 陈涛, 米文忠, 梁晓良, 王汝栋. 基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 277-284.
[14] 谭尧升, 陈文夫, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 裴磊, 梁程, 尚超, 杨鹏博, 姚孟迪, 李向前, 李俊平. 特高拱坝施工期多维信息模型研究与实践[J]. 清华大学学报(自然科学版), 2022, 62(12): 1884-1895.
[15] 陈俊沣, 程辉航, 魏旋, 温亲玮, 吴乐, 刘畅, 钟茂华. 隧道火灾全尺寸实验中温度测量误差[J]. 清华大学学报(自然科学版), 2022, 62(10): 1618-1625.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn