Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1715-1720    DOI: 10.16511/j.cnki.qhdxxb.2021.26.034
  电机工程 本期目录 | 过刊浏览 | 高级检索 |
超导直流能源管道载流导体设计
黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光
清华大学 电机工程与应用电子技术系, 电力系统及大型发电设备安全控制和仿真国家重点实验室, 北京 100084
Conductor design in bipolar superconducting DC energy pipelines
HUANG Weican, JIANG Xiaohua, XUE Peng, LI Xinyang, SHEN Zhidong, SUN Yuguang
State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4820 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 超导直流能源管道将高温超导直流输电技术和长距离液化天然气管道输送技术结合为一体,管道中流动的液化天然气起到超导电缆制冷剂的作用,能够大幅提高能量的输送密度和效率。为保证大容量超导输电系统在直流能源管道这种特殊运行工况下的安全可靠运行,有必要研究其中载流导体的设计方法。该文分析了能源管道运行温区中超导带材临界电流密度受磁场影响的衰减情况和铜支撑骨架在超导电缆短路失超中所起的作用。对±10 kV/1 kA双极同轴超导直流能源管道的载流导体进行了优化设计,得到单极电缆所需的超导带材最少数量为12根,铜支撑体最小截面积为1.48×10-4m2。通过有限元仿真,验证了超导能源管道中的载流导体优化方案在短路故障下的热稳定性。该载流导体设计方法对于不同电压电流等级和管道结构的超导直流能源管道设计也具有普适意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄伟灿
蒋晓华
薛芃
李欣阳
沈稚栋
孙宇光
关键词 高温超导带材有限元仿真热稳定性超导直流能源管道    
Abstract:Superconducting DC energy pipelines combine high temperature superconducting (HTS) DC transmission lines with long-distance liquefied natural gas (LNG) transmission lines where the flowing LNG acts as the refrigerant for the superconducting cable in the pipeline.This greatly increases the overall system energy transmission density and efficiency.The conductors then need to be carefully designed to ensure the safety and reliability of the high-capacity superconducting transmission system for the special operating conditions of superconducting DC energy pipelines.This study analyzed the critical current density degradations of the high temperature superconducting tapes influenced by the magnetic fields at the pipeline operating temperature and the effects of the copper former during short-circuit faults in the superconducting cable.The analysis was then used to optimize the conductor design of a ±10 kV/1 kA bipolar coaxial superconducting DC energy pipeline.The results indicate that at least 12 HTS tapes are required for a single pole and the minimum cross-sectional area of the copper former is 1.48×10-4 m2.The thermal stability of the superconducting DC energy pipeline during a short-circuit fault was then verified by finite element simulations.The conductor design method presented in this paper is also applicable to the design of superconducting DC energy pipelines with various voltage and current levels and pipeline structures.
Key wordshigh temperature superconducting (HTS) tapes    finite element simulation    thermal stability    superconducting DC energy pipeline
收稿日期: 2021-05-25      出版日期: 2022-09-03
基金资助:孙宇光,副教授,E-mail:sunyuguang98@mails.tsinghua.edu.cn
引用本文:   
黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
HUANG Weican, JIANG Xiaohua, XUE Peng, LI Xinyang, SHEN Zhidong, SUN Yuguang. Conductor design in bipolar superconducting DC energy pipelines. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1715-1720.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.034  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1715
  
  
  
  
  
  
  
[1] ZAHEDI A. A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4775-4779.
[2] FLOURENTZOU N, AGELIDIS V G, DEMETRIADES G D. VSC-based HVDC power transmission systems:An overview[J]. IEEE Transactions on Power Electronics, 2009, 24(3):592-602.
[3] VENKATARAMANAN G, JOHNSON B K. A superconducting DC transmission system based on VSC transmission technologies[J]. IEEE Transactions on Appiled Superconductivity, 2003, 13(2):1922-1925.
[4] MORANDI A. HTS dc transmission and distribution:Concepts, applications and benefits[J]. Superconductor Science and Technology, 2015, 28(12):123001.
[5] KOPYLOV S, SYTNIKOV V, BEMERT S, et al. HTS DC transmission line for megalopolis grid development[C]//Proceedings of the 11th European Conference on Applied Superconductivity (EUCAS2013). Genoa, Italy:IOP Publishing, 2014, 507:032047.
[6] ZHANG Y, TAN H B, LI Y Z, et al. Feasibility analysis and application design of a novel long-distance natural gas and electricity combined transmission system[J]. Energy, 2014, 77:710-719.
[7] QIU Q Q, ZHANG G M, XIAO L Y, et al. General design of±100 kV/1kA energy pipeline for electric power and LNG transportation[J]. Cryogenics, 2020, 109:103120.
[8] SIM K, KIM S, CHO J, et al. Design and current transporting characteristics of 80 kV direct current high temperature superconducting cable core[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):5401804.
[9] SYTNIKOV V E, BEMERT S E, IVANOV Y V, et al. HTS DC cable line project:On-going activities in Russia[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):5401904.
[10] YAMAGUCHI S, KAWAHARA T, HAMABE M, et al. Experiment of 200-meter superconducting DC cable system in Chubu University[J]. Physica C:Superconductivity and its Applications, 2011, 471(21-22):1300-1303.
[11] XIAO L Y, DAI S T, LIN L Z, et al. Development of a 10 kA HTS DC power cable[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):5800404.
[12] ZHANG D, DAI S T, ZHANG F Y, et al. Design research on the conductor of 10 kA class HTS DC power cable[J]. Cryogenics, 2012, 52(12):725-729.
[13] 徐靖捷,莫思铭,蔡渊,等.双极同轴高温超导直流电缆通电导体设计[J].低温与超导, 2019, 47(10):40-44, 54. XU J J, MO S M, CAI Y, et al. Design of bipolar coaxial HTS DC cable[J]. Cryogenics and Superconductivity, 2019, 47(10):40-44, 54.(in Chinese)
[14] 林玉宝,林良真,高智远,等. 2000安高温超导输电电缆的研制[J].高技术通讯, 2001, 11(10):95-99. LIN Y B, LIN L Z, GAO Z Y, et al. Development of a 2000A HTS transmission power cable[J]. High Technology Letters, 2001, 11(10):95-99.(in Chinese)
[15] HUANG W C, JIANG X H, XUE P, et al. Electromagnetic analysis of HTS DC cables based on critical state model[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5):4803005.
[16] HAJIRI G, BERGER K, DORGET R, et al. Thermal and electromagnetic design of DC HTS cables for the future french railway network[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5):5400208.
[17] 郭伟,李卫国,丘明,等.单通道冷绝缘高温超导电缆铜骨架的设计计算[J].低温与超导, 2013, 41(8):35-39. GUO W, LI W G, QIU M, et al. Calculation and design of single cold dielectric HTS cable's copper former[J]. Cryogenics and Superconductivity, 2013, 41(8):35-39.(in Chinese)
[18] YANG T H, LI W X, XIN Y, et al. Research on current carrying capacity of Bi-2223/Ag superconducting tape in the temperature range of 75-105 K[J]. Physica C:Superconductivity and Its Applications, 2021, 582:1353825.
[19] GRILLI F, SIROIS F, ZERMEÑO V M R, et al. Self-consistent modeling of the IC of HTS devices:How accurate do models really need to be?[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(6):8000508.
[20] 韩亮,白小会,陈波,等.张北±500kV柔性直流电网换流站控制保护系统设计[J].电力建设, 2017, 38(3):42-47. HAN L, BAI X H, CHEN B, et al. Control and protection system design of Zhangbei±500 kV converter station in VSC-HVDC power grid[J]. Electric Power Construction, 2017, 38(3):42-47.(in Chinese)
[21] 时伯年,李岩,孙刚,等.基于快速重合闸的多端直流配电网极间故障隔离恢复策略[J].电力系统保护与控制, 2019, 47(8):88-95. SHI B N, LI Y, SUN G, et al. Fault isolation recovery strategy for multi-terminal DC distribution network based on DC breaker reclosing[J]. Power System Protection and Control, 2019, 47(8):88-95.(in Chinese)
[22] 王渝红,傅云涛,曾琦,等.柔性直流电网故障保护关键技术研究综述[J].高电压技术, 2019, 45(8):2362-2374. WANG Y H, FU Y T, ZENG Q, et al. Review on key techniques for fault protection of flexible DC grids[J]. High Voltage Engineering, 2019, 45(8):2362-2374.(in Chinese)
[23] 戴志辉,葛红波, CROSSLEY P,等.柔性直流配电网故障识别与隔离策略综述[J].华北电力大学学报, 2017, 44(4):19-28. DAI Z H, GE H B, CROSSLEY P, et al. An overview on fault detection and isolation strategies of flexible DC distribution networks[J]. Journal of North China Electric Power University, 2017, 44(4):19-28.(in Chinese)
[24] CAMPBELL A M, EVETTS J E. Critical currents in superconductors[M]. London:Taylor and Francis, 1972.
[25] BEAN C P. Magnetization of high-field superconductors[J]. Reviews of Modern Physics, 1964, 36(1):31-39.
[26] MORANDI A, FABBRI M. A unified approach to the power law and the critical state modeling of superconductors in 2D[J]. Superconductor Science and Technology, 2015, 28(2):024004.
[27] YANG J, FLETCHER J E, O'REILLY J. Short-circuit and ground fault analyses and location in VSC-based DC network cables[J]. IEEE transactions on Industrial Electronics, 2012, 59(10):3827-3837.
[1] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[2] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[3] 徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
[4] 吕振华, 李明. 锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J]. 清华大学学报(自然科学版), 2018, 58(1): 35-42.
[5] 吕振华, 刘赛. 枪弹穿甲过程仿真的有限元接触模型与分区并行计算误差特性[J]. 清华大学学报(自然科学版), 2017, 57(5): 483-490.
[6] 贾晓红, 陈华明, 励行根, 王玉明. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 167-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn