Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1964-1971    DOI: 10.16511/j.cnki.qhdxxb.2021.26.035
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
城镇化和功能疏解对北京市蒸散发的影响
刘家宏1,2, 刘创1, 周晋军3, 邵薇薇1
1. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038;
2. 水利部 水资源与水生态工程技术研究中心,北京 100044;
3. 北京工业大学 城市建设学部,北京 100124
Effects of urbanization and functional relief on evaporation in Beijing
LIU Jiahong1,2, LIU Chuang1, ZHOU Jinjun3, SHAO Weiwei1
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. Engineering and Technology Research Center for Water Resources and Hydroecology, Ministry of Water Resources, Beijing 100044, China;
3. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(7622 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 快速城镇化改变了城市土地利用结构, 致使城市区域的蒸散发发生变化。城市区域除了常见下垫面的蒸发, 建筑内部的蒸发耗水也不可忽略。根据下垫面的不同功能, 城镇建设用地可分为道路、绿地、水面和建筑4种类型, 该文以北京市城六区为例, 在2000、2015和2018年的城镇化水平下, 综合自然蒸散发和建筑内部蒸发耗水, 研究了城镇化和非首都功能疏解进程对城市区域蒸散发的影响, 结果表明:城镇化进程对城镇建设用地的蒸散发具有显著增强作用, 其中人口密度是影响其蒸散发的关键因素; 非首都功能疏解降低了城市社会用水的聚集程度, 同时也降低了城市区域蒸散发。根据各类下垫面对区域蒸散发的贡献率可知, 建筑体和绿地蒸散发占据主体地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘家宏
刘创
周晋军
邵薇薇
关键词 城镇化蒸散发城市耗水土地利用北京市城六区    
Abstract:Rapid urbanization has changed the structure of urban land use which has led to changes in evaporation rates in urban areas. Evaporation mechanisms include the common evaporation from the underlying urban surface as well as evaporation inside buildings. Urban surfaces can be divided into road, green spaces, water surfaces and buildings. This paper analyzes evaporation rates for the urbanization levels in six Beijing districts during 2000, 2015 and 2018. Both natural evaporation and the water dissipation inside buildings are considered to analyze the impact of urbanization and non-capital functions relief on the urban regional evaporation. The results show that urbanization significantly enhances the evaporation from urban construction land and the population density is the key factor affecting the evaporation. The deconstruction of the non-capital function reduces the urban social water use and the urban regional evaporation. This analysis of the contributions from the various underlying surfaces to the regional evaporation shows that buildings and green spaces provide most of the evaporation.
Key wordsurbanization    evaporation    urban water dissipation    land use type    Beijing districts
收稿日期: 2021-05-18      出版日期: 2022-11-10
引用本文:   
刘家宏, 刘创, 周晋军, 邵薇薇. 城镇化和功能疏解对北京市蒸散发的影响[J]. 清华大学学报(自然科学版), 2022, 62(12): 1964-1971.
LIU Jiahong, LIU Chuang, ZHOU Jinjun, SHAO Weiwei. Effects of urbanization and functional relief on evaporation in Beijing. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1964-1971.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.035  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1964
  
  
  
  
  
  
  
  
[1] MONTGOMERY M R. The urban transformation of the developing world[J]. Science, 2008, 319(5864): 761-764.
[2] LIU G W. Basic problems and frontier of hydrology[J]. Advances in Water Science, 2020, 31(5): 685-689. (in Chinese) 刘国纬. 水文科学的基本问题及当代前沿[J]. 水科学进展, 2020, 31(5): 685-689.
[3] Global Rural-Urban Mapping Project. Urban expansion[J]. Science, 2005, 307(5716): 1718.
[4] XING Y, LIU J H, NI G H. Impacts of urban canopy roughness on storm evolution and rainfall area[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(10): 845-854. (in Chinese) 邢月, 刘家辉, 倪广恒. 城市冠层粗糙度对暴雨云团运动和降雨落区的影响[J]. 清华大学学报(自然科学版), 2020, 60(10): 845-854.
[5] SONG X M, ZHANG J Y, HE R M, et al. Urban flood and waterlogging and causes analysis in Beijing[J]. Advances in Water Science, 2019, 30(2): 153-165. (in Chinese) 宋晓猛, 张建云, 贺瑞敏, 等. 北京城市洪涝问题与成因分析[J]. 水科学进展, 2019, 30(2): 153-165.
[6] LIU J H, ZHOU J J, SHAO W W. Analysis of urban high water dissipation phenomenon and its mechanism[J]. Water Resources Protection, 2018, 34(3): 17-21, 29. (in Chinese) 刘家宏, 周晋军, 邵薇薇. 城市高耗水现象及其机理分析[J]. 水资源保护, 2018, 34(3): 17-21, 29.
[7] TANG T, RAN S H, TAN M H. Urbanization and its impact on the evapotranspiration in Beijing-Tianjin-Tangshan area[J]. Journal of Geo-information Science, 2013, 15(2): 233-240. (in Chinese) 唐婷, 冉圣宏, 谈明洪. 京津唐地区城市扩张对地表蒸散发的影响[J]. 地球信息科学学报, 2013, 15(2): 233-240.
[8] GAO X R, LU C Y, QIN D Y, et al. Simulation of evapotranspiration in urban areas based on URMOD and validation with remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S1): 117-123. (in Chinese) 高学睿, 陆垂裕, 秦大庸, 等. 基于URMOD模型的市区蒸散发模拟与遥感验证[J]. 农业工程学报, 2012, 28(S1): 117-123.
[9] DI S C, WU W Y, LIU H L, et al. Water consumption estimation and evapotranspiration inversion based on remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 98-104. (in Chinese) 邸苏闯, 吴文勇, 刘洪禄, 等. 基于遥感技术的绿地耗水估算与蒸散发反演[J]. 农业工程学报, 2012, 28(10): 98-104.
[10] DOW C L, DEWALLE D R. Trends in evaporation and Bowen ratio on urbanizing watersheds in eastern United States[J]. Water Resources Research, 2000, 36(7): 1835-1843.
[11] ZHAN C S, LI L, WANG H X, et al. Estimation and time-space analysis of the regional evapotranspiration using quantitative remote sensing in Taiwan area[J]. Remote Sensing Technology and Application, 2011, 26(4): 405-412. (in Chinese) 占车生, 李玲, 王会肖, 等. 台湾地区蒸散发的遥感估算与时空分析[J]. 遥感技术与应用, 2011, 26(4): 405-412.
[12] LIU J H, WANG H, GAO X R, et al. Review on urban hydrology[J]. Chinese Science Bulletin, 2014, 59(36): 3581-3590. (in Chinese) 刘家宏, 王浩, 高学睿, 等. 城市水文学研究综述[J]. 科学通报, 2014, 59(36): 3581-3590.
[13] ZHOU L. Urban evapotranspiration in Beijing[D]. Beijing: Tsinghua University, 2015. (in Chinese) 周琳. 北京市城市蒸散发研究[D]. 北京: 清华大学, 2015.
[14] ZHOU J J, LIU J H, DONG Q S, et al. Simulation model for urban water dissipation[J]. Advances in Water Science, 2017, 28(2): 276-284. (in Chinese) 周晋军, 刘家宏, 董庆珊, 等. 城市耗水计算模型[J]. 水科学进展, 2017, 28(2): 276-284.
[15] FANG S B, JIA R F, FANG S B, et al. Study on drive factors and regulation of urban domestic water use efficiency[J]. Yellow River, 2013, 35(3): 47-50, 61. (in Chinese) 方诗标, 贾仁甫, 方诗彬, 等. 城市生活用水效率驱动因子及调控研究[J]. 人民黄河, 2013, 35(3): 47-50, 61.
[16] CONG Z T, SHEN Q N, ZHOU L, et al. Evapotran- spiration estimation considering anthropogenic heat based on remote sensing in urban area[J]. Science China Earth Sciences, 2017, 60(4): 659-671.
[17] ZHOU J J, WANG H, LIU J H, et al. "Nature-Social" dual attribute and seasonal characteristics of urban water dissipation: A case study of Beijing[J]. Journal of Hydraulic Engineering, 2020, 51(11): 1325-1334. (in Chinese) 周晋军, 王浩, 刘家宏, 等. 城市耗水的"自然-社会"二元属性及季节性特征研究——以北京市为例[J]. 水利学报, 2020, 51(11): 1325-1334.
[18] YU Y. 70 years of urbanization in China: Process and outlook[J]. Journal of Xuzhou Institute of Technology (Social Sciences Edition), 2019, 34(6): 1-10. (in Chinese) 余英. 中国城镇化70年: 进程与展望[J]. 徐州工程学院学报(社会科学版), 2019, 34(6): 1-10.
[19] ZHOU J J, LIU J H, WANG H, et al. Water dissipation mechanism of residential and office buildings in urban areas[J]. Science China Technological Sciences, 2018, 61(7): 1072-1080.
[20] ZHOU J J, LIU J H, YAN D Y, et al. Dissipation of water in urban area, mechanism and modelling with the consideration of anthropogenic impacts: A case study in Xiamen[J]. Journal of Hydrology, 2019, 570: 356-365.
[1] 陈若宇, 周江评. 基于位置服务大数据的粤港澳大湾区通勤标度特征分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1195-1202.
[2] 王晨沣, 傅旭东, 张玍, 龚正, 覃超. 黄土高原植被作用下黄河数字流域模型坡面侵蚀模块改进[J]. 清华大学学报(自然科学版), 2022, 62(12): 1953-1963.
[3] 陈涛, 陈智超. 基于证据推理法的城镇综合承灾能力网格化评价方法[J]. 清华大学学报(自然科学版), 2018, 58(6): 570-575.
[4] 奇格奇, 吴建平, 杜怡曼, 贾宇涵. 快速城镇化背景下的驾驶风格多样性分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1320-1326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn