Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1875-1883    DOI: 10.16511/j.cnki.qhdxxb.2021.26.041
  信息科学 本期目录 | 过刊浏览 | 高级检索 |
大动物SPECT系统设计与数值模拟
张旨晗1, 刘辉1, 吕振雷1, 侯岩松2, 孙立风3, 王石1, 吴朝霞1, 刘亚强1
1. 清华大学 工程物理系, 北京 100084;
2. 北京永新医疗设备有限公司, 北京 102206;
3. 中核高能(天津)装备有限公司, 天津 300300
Design and numerical simulations of a large animal SPECT system
ZHANG Zhihan1, LIU Hui1, L�Zhenlei1, HOU Yansong2, SUN Lifeng3, WANG Shi1, WU Zhaoxia1, LIU Yaqiang1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing NOVEL MEDICAL Equipment Ltd., Beijing 102206, China;
3. CNNC High Energy Equipment(Tianjin) Co., Ltd., Tianjin 300300, China
全文: PDF(3309 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文选用了一种现有的大动物单光子发射断层成像(single photon emission computed tomography, SPECT)探测器架构, 在此基础上对其中的准直器系统进行了参数设计。通过理论计算视野(field of view, FOV)中心点的空间分辨率和探测效率以及投影交叠比例并设置一定约束条件, 选出了6组设计方案作为评估对象, 并利用了一种性能评估方法, 通过计算选定像素的局部脉冲响应的对比度恢复系数(contrast recovery coefficient, CRC)和方差, 对6组不同准直器设计方案进行了评估, 给出了最优化的设计方案, 并通过热圆柱模型的数值模拟成像实验对该设计方案进行了成像效果验证。理论计算和数值模拟结果表明:该设计方案在满足视野中心探测效率不低于0.03%的情况下, 热圆柱成像空间分辨率不低于3.0 mm, 达到了技术指标要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张旨晗
刘辉
吕振雷
侯岩松
孙立风
王石
吴朝霞
刘亚强
关键词 大动物SPECT系统性能评估方法准直器设计方案数值模拟    
Abstract:This study analyzed the collimator parameters of a large animal single photon emission computed tomography (SPECT) detector. Six collimator design schemes were chosen by thoretical calculation of the spatial resolution, the sensitivity at the field of view (FOV) center and the projection overlap ratio with specified constraints. A performance evaluation method was used to evaluate the six collimator design schemes by calculating the contrast recovery coefficient (CRC) and the variance of the local impulse response of selected pixels to find the best design scheme. The imaging effect of the design scheme was verified by numerical simulations of imaging experiments of a hotrod phantom. The theoretical calculations and the numerical simulations demonstrate that the design scheme gives a spatial resolution of the hotrod phantom that is better than 3.0 mm with better than 0.03% sensitivity at the FOV center, which meets the technical requirements.
Key wordslarge animal SPECT system    performance evaluation method    collimator design schemes    numerical simulations
收稿日期: 2021-07-23      出版日期: 2022-11-10
基金资助:刘辉, 助理研究员, E-mail: liuhui2020@tsinghua.edu.cn
引用本文:   
张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
ZHANG Zhihan, LIU Hui, L�Zhenlei, HOU Yansong, SUN Lifeng, WANG Shi, WU Zhaoxia, LIU Yaqiang. Design and numerical simulations of a large animal SPECT system. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1875-1883.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.041  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1875
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] WEISSLEDER R. Molecular imaging: Exploring the next frontier[J]. Radiology, 1999, 212(3): 609-614.
[2] BOGDANOV JR A, MARECOS E, CHENG H C, et al. Treatment of experimental brain tumors with trombospondin-1 derived peptides: An in vivo imaging study[J]. Neoplasia, 1999, 1(5): 438-445.
[3] JANSSEN J P, HOFFMANN J V, KANNO T, et al. Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging[J]. Scientific Reports, 2020, 10(1): 1-10.
[4] BERG E, ZHANG X Z, BEC J, et al. Development and evaluation of mini-EXPLORER: A long axial field-of-view PET scanner for nonhuman primate imaging[J]. Journal of Nuclear Medicine, 2018, 59(6): 993-998.
[5] CHAI P, FENG B T, ZHANG Z M, et al. NEMA NU-4 performance evaluation of a non-human primate animal PET[J]. Physics in Medicine and Biology, 2019, 64(10): 105018.
[6] ZHANG J J, ZANNONI E M, DU Y, et al. Alpha-SPECT: Hyperspectral single photon imaging of targeted α-emission therapy[J]. Journal of Nuclear Medicine, 2019, 60(s1): 311-311.
[7] CHERRY S R. In vivo molecular and genomic imaging: New challenges for imaging physics[J]. Physics in Medicine and Biology, 2004, 49(3): 13-48.
[8] MA T Y, WEI Q Y, LYU Z L, et al. Self-collimating SPECT with multi-layer interspaced mosaic detectors[J]. IEEE Transactions on Medical Imaging, 2021, 40(8): 2152-2169.
[9] HOFFMANN J V, JANSSEN J P, KANNO T, et al. Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging[J]. EJNMMI physics, 2020, 7(1): 1-15.
[10] DAI T T, MA T Y, LIU H, et al. A high-resolution small animal SPECT system developed at Tsinghua[J]. Nuclear Science and Techniques, 2011, 22(6): 344-348.
[11] LUKAS M, KLUGE A, BEINDORFF N, et al. Accurate Monte Carlo modeling of small-animal multi-pinhole SPECT for non-standard multi-isotope applications[J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2208-2220.
[12] SUN L F, LYU Z L, HOU Y S, et al. System design and performance evaluation for cardiac SPECT imaging with multi-pinhole collimator[J]. Atomic Energy Science and Technology, 2021, 55(s2): 407-413. (in Chinese) 孙立风, 吕振雷, 侯岩松, 等. 多针孔心脏SPECT成像系统设计与性能评估[J]. 原子能科学与技术, 2021, 55(s2): 407-413.
[13] ZERAATKAR N, AUER B, KALLURI K S, et al. Improvement in sampling and modulation of multiplexing with temporal shuttering of adaptable apertures in a brain-dedicated multi-pinhole SPECT system[J]. Physics in Medicine and Biology, 2021, 66(6): 065004.
[14] WEI Q Y, WANG S, MA T Y, et al. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 786: 147-154.
[15] METZLER S D, ACCORSI R. Resolution-versus sensitivity-effective diameter in pinhole collimation: Experimental verification[J]. Physics in Medicine and Biology, 2005, 50(21): 5005-5017.
[16] GONG K, MAJEWSKI S, KINAHAN P E, et al. Designing a compact high performance brain PET scanner-simulation study[J]. Physics in Medicine and Biology, 2016, 61(10): 3681-3697.
[17] FESSLER J A, ROGERS W L. Spatial resolution properties of penalized-likelihood image reconstruction: Space-invariant tomographs[J]. IEEE Transactions on Image Processing, 1996, 5(9): 1346-1358.
[18] QI J Y, LEAHY R M. Resolution and noise properties of MAP reconstruction for fully 3-D PET[J]. IEEE Transactions on Medical Imaging, 2000, 19(5): 493-506.
[19] FESSLER J A. Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography[J]. IEEE Transactions on Image Processing, 1996, 5(3): 493-506.
[20] VUNCKX K, BEQUÉ D, DEFRISE M, et al. Single and multipinhole collimator design evaluation method for small animal SPECT[J]. IEEE Transactions on Medical Imaging, 2007, 27(1): 36-46.
[21] QI J Y, LEAHY R M. A theoretical study of the contrast recovery and variance of MAP reconstructions from PET data[J]. IEEE Transactions on Medical Imaging, 1999, 18(4): 293-305.
[22] SCHMITT D, KARUTA B, CARRIER C, et al. Fast point spread function computation from aperture functions in high-resolution positron emission tomography[J]. IEEE Transactions on Medical Imaging, 1988, 7(1): 2-12.
[23] STRUL D, SLATES R B, DAHLBOM M, et al. An improved analytical detector response function model for multilayer small-diameter PET scanners[J]. Physics in Medicine and Biology, 2003, 48(8): 979-994.
[24] ERLANDSSON K, BUVAT I, PRETORIUS P H, et al. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology[J]. Physics in Medicine and Biology, 2012, 57(21): 119-159.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[15] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn