Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 516-522    DOI: 10.16511/j.cnki.qhdxxb.2021.26.044
  专题:智能交通 本期目录 | 过刊浏览 | 高级检索 |
基于Fast-MCD的自适应建模探索轨道不平顺劣化
杨雅琴1, 徐鹏1, 吴细水2
1. 北京交通大学 交通运输学院, 北京 100044;
2. 中国国家铁路集团有限公司 工电部, 北京 100844
Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration
YANG Yaqin1, XU Peng1, WU Xishui2
1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China;
2. Infrastructure Management Department, China National Railway Group Co., Ltd., Beijing 100844, China
全文: PDF(2641 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 掌握轨道不平顺劣化模式是实现预测性维修的基础,根据维修作业日期划分轨道不平顺劣化过程是探索其劣化模式的前提。作者之前提出了一套算法实现轨道不平顺劣化自适应分段建模,为提高该算法的效率和准确度,该文基于Mahalanobis距离提出了双层快速最小协方差行列式(fast minimum covariance determinant,Fast-MCD)估计法,并依托于昌福高速铁路2013-2020年的动态检测数据确定模型参数。经实例验证,经双层Fast-MCD估计法改进后,算法整体运行效率提升了近50%,识别维修作业日期的精确度提升了近45.3%。为进一步探索轨道不平顺劣化模式,根据改进后算法识别出的每个线路基本单元的维修作业日期,将每个线路基本单元的左/右高低不平顺劣化过程划分为多个维修周期,最终得到近6 000个维修周期。基于每个维修周期对比分析线性、指数、对数函数的拟合效果及预测能力,认为线性函数更贴近轨道高低不平顺劣化模式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雅琴
徐鹏
吴细水
关键词 Mahalanobis距离Fast-MCD自适应建模轨道不平顺劣化    
Abstract:Railway track predictive maintenance needs to identify the track irregularity deterioration mode. For this, the track irregularity deterioration process is split into maintenance periods according to the maintenance records to analyze the deterioration mode. A rail track irregularity deterioration adaptive piecewise modeling framework was developed. In order to improve the efficiency and accuracy of the framework, a two-level fast minimum covariance determinant (Fast-MCD) was developed based on the Mahalanobis distance. The critical values for each level were determined for a specific case by measurements along the Nanchang-Fuzhou railway from 2013 to 2020. Analysis of the data showed that the efficiency is improved by nearly 50% and the identification accuracy of the maintenance dates is improved by nearly 45.3% through use of the two-level Fast-MCD. The track irregularity deterioration mode was further studied by using this framework to analyze the track longitudinal deterioration of each track unit for each maintenance period with a total of nearly 6 000 maintenance periods. The goodness-of-fit and prediction capabilities of linear, exponential, and logarithmic functions were compared for each maintenance period. The results show that the linear function best describes the track longitudinal irregularity deterioration.
Key wordsMahalanobis distance    Fast-MCD    adaptive modeling    track irregularity deterioration
收稿日期: 2021-08-30      出版日期: 2022-03-10
基金资助:徐鹏,副教授,E-mail:peng.xu@bjtu.edu.cn
引用本文:   
杨雅琴, 徐鹏, 吴细水. 基于Fast-MCD的自适应建模探索轨道不平顺劣化[J]. 清华大学学报(自然科学版), 2022, 62(3): 516-522.
YANG Yaqin, XU Peng, WU Xishui. Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 516-522.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.044  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/516
  
  
  
  
  
  
  
[1] QUIROGA L M, SCHNIEDER E. A heuristic approach to railway track maintenance scheduling[M]//NING B, BREBBIA C A. Computers in Railways XII. Boston:WIT Press, 2010:687-699.
[2] VEIT P, MARSCHNIG S. Sustainability in track:A precondition for high speed traffic[C]//Proceedings of 2010 Joint Rail Conference. Urbana, USA:ASME, 2010.
[3] 郭然, 韩宝明, 李得伟, 等. 具有更新机制的铁路轨道不平顺灰色预测模型[J]. 中南大学学报(自然科学版), 2013, 44(10):4334-4341. GUO R, HAN B M, LI D W, et al. Grey prediction model for track irregularity with update mechanism[J]. Journal of Central South University (Science and Technology), 2013, 44(10):4334-4341. (in Chinese)
[4] ANDRADE A R, TEIXEIRA P F. Biobjective optimization model for maintenance and renewal decisions related to rail track geometry[J]. Transportation Research Record:Journal of the Transportation Research Board, 2011, 2261(1):163-170.
[5] 许玉德, 吴纪才. 利用线性预测模型分析轨道不平顺发展[J]. 石家庄铁道学院学报, 2005, 18(1):6-9. XU Y D, WU J C. Analysis on development of track irregularities with linear forecast model[J]. Journal of Shijiazhuang Railway Institute, 2005, 18(1):6-9. (in Chinese)
[6] 杨飞. 基于高低不平顺的线路捣固作业维修标准及决策技术研究[J]. 铁道建筑, 2017(7):131-135. YANG F. Research on maintenance standard and decision-making technique for tamping operation based on longitudinal irregularity[J]. Railway Engineering, 2017(7):131-135. (in Chinese)
[7] SOLEIMANMEIGOUNI I, XIAO X, AHMADI A, et al. Modelling the evolution of ballasted railway track geometry by a two-level piecewise model[J]. Structure and Infrastructure Engineering, 2018, 14(1):33-45.
[8] DROŹDZIEL J, SOWIŃSKI B. Simulation of railway track deterioration influenced by ballast stiffness and dry friction[M]//ALLAN J, ARIAS E, BREBBIA C A, et al. Computers in Railways XI. Boston:WIT Press, 2008:693-702.
[9] 杨雅琴, 徐鹏, 李晔, 等. 适用复杂劣化趋势的轨道不平顺鲁棒建模方法[J]. 交通运输系统工程与信息, 2020, 20(5):156-162. YANG Y Q, XU P, LI Y, et al. Robust modeling method for track irregularity of complicated deterioration trend[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5):156-162. (in Chinese)
[10] RISSANEN J. Stochastic complexity in statistical inquiry theory[M]. River Edge:World Scientific Publishing Co., 1989.
[11] 中国国家铁路集团有限公司. 高速铁路线路维修规则(征求意见稿)[M]. 北京:中国铁道出版社, 2020. China National Railway Group Co., Ltd. Rules of high-speed railway track maintenance (draft for comments)[M]. Beijing:China Railway Publishing House, 2020. (in Chinese)
[12] MAHALANOBIS P C. On the generalized distance in statistics[J]. Proceedings of the National Institute of Sciences of India, 1936(2):49-55.
[13] ROUSSEEUW P J. Least median of squares regression[J]. Journal of the American Statistical Association, 1984, 79(388):871-880.
[14] ROUSSEEUW P J, VAN DRIESSEN K. A fast algorithm for the minimum covariance determinant estimator[J]. Technometrics, 1999, 41(3):212-223.
[15] XU P, SUN Q X, LIU R K, et al. Optimizing the alignment of inspection data from track geometry cars[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(1):19-35.
[1] 赵日, 刘立业, 李君利. 基于主成分分析和Mahalanobis距离的异常γ能谱识别[J]. 清华大学学报(自然科学版), 2017, 57(8): 826-831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn