Airborne image velocimetry system and its application to measure the surface flow fields of long river reaches
CAO Liekai1, DETERT Martin2,3, LI Danxun1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; 2. Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich 8093, Switzerland; 3. Meisser Surveying AG, Chur 7000, Switzerland
Abstract:An airborne image velocimetry (AIV) system is developed for field measurements of long river reaches based on ground control points placed along both riversides and tracking particles seeded onto the water surface. Image frames are taken by an unmanned aerial vehicle in cruise flying mode and stabilized by orthorectification and georeferencing using structure from motion (SfM). Particle image velocimetry is applied to velocity field computation, resulting in a panoramic velocity field. Applications of AIV in urban and rural areas produce high coverage of velocity fields with a high spatial resolution, enabling a detailed description of the flow characteristics. The relative errors of the streamwise velocity components of AIV are ?0% and ?% compared with that of the acoustic Doppler current profiler (ADCP) and flow meter, respectively, which meet the accuracy requirements of field measurements. Overall, with its high reliability and strong applicability, the AIV system could conduct large-scale velocity field measurements with high spatial resolution in long river reaches.
曹列凯, DETERTMartin, 李丹勋. 基于无人机的长河段表面流场测量系统与应用[J]. 清华大学学报(自然科学版), 2022, 62(12): 1922-1929.
CAO Liekai, DETERT Martin, LI Danxun. Airborne image velocimetry system and its application to measure the surface flow fields of long river reaches. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1922-1929.
[1] KINOSHITA R. An analysis of the movement of flood waters by aerial photography, concerning characteristics of turbulence and surface flow[J]. Journal of the Japan Society of Photogrammetry, 1967, 6(1): 1-17. [2] NAKAGAWA H, NEZU I. Structure of space-time correlations of bursting phenomena in an open-channel flow[J]. Journal of Fluid Mechanics, 1981, 104: 1-43. [3] BRAS R L. Hydrology: An introduction to hydrologic science[M]. Reading, MA: Addison-Wesley, 1990. [4] BANSAL M K. Dispersion in natural streams[J]. Journal of the Hydraulics Division, 1971, 97(11): 1867-1886. [5] PICCARRETA M, FAULKNER H, BENTIVENGA M, et al. The influence of physico-chemical material properties on erosion processes in the badlands of Basilicata, Southern Italy[J]. Geomorphology, 2006, 81(3-4): 235-251. [6] RULLI M C, ROSSO R. Modeling catchment erosion after wildfires in the San Gabriel Mountains of southern California[J]. Geophysical Research Letters, 2005, 32(19): L19401. [7] WELBER M, LE COZ J, LARONNE J B, et al. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)[J]. Water Resources Research, 2016, 52(2): 1108-1126. [8] LIN S X, ZENG Z Y, ZHU Y T, et al. Development and application of tangent sweeping radar flow measurement system[J]. Water Resources Informatization, 2019(1): 31-36. (in Chinese) 林思夏, 曾仲毅, 朱云通, 等. 侧扫雷达测流系统开发与应用[J]. 水利信息化, 2019(1): 31-36. [9] FUJITA I, MUSTE M, KRUGER A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications[J]. Journal of Hydraulic Research, 1998, 36(3): 397-414. [10] WEITBRECHT V, KVHN G, JIRKA G H. Large scale PIV-measurements at the surface of shallow water flows[J]. Flow Measurement and Instrumentation, 2002, 13(5-6): 237-245. [11] STUMPF A, AUGEREAU E, DELACOURT C, et al. Photogrammetric discharge monitoring of small tropical mountain rivers: A case study at Rivière des Pluies, Réunion Island[J]. Water Resources Research, 2016, 52(6): 4550-4570. [12] ZHONG Q, CHEN Q G, CAO L K, et al. An in-situ method for measuring surface topography and velocity field of flood flow discharged from high-dam reservoir[J]. Advances in Water Science, 2015, 26(6): 829-836. (in Chinese) 钟强, 陈启刚, 曹列凯, 等. 高坝泄洪水面曲面及流速场的原型测量方法[J]. 水科学进展, 2015, 26(6): 829-836. [13] MUSTE M, FUJITA I, HAUET A. Large-scale particle image velocimetry for measurements in riverine environments[J]. Water Resources Research, 2008, 44(4): W00D19. [14] CAO L K, WEITBRECHT V, LI D X, et al. Airborne feature matching velocimetry for surface flow measurements in rivers[J]. Journal of Hydraulic Research, 2021, 59(4): 637-650. [15] DETERT M, JOHNSON E D, WEITBRECHT V. Proof-of-concept for low-cost and non-contact synoptic airborne river flow measurements[J]. International Journal of Remote Sensing, 2017, 38(8-10): 2780-2807. [16] FUJITA I C, NOTOYA Y, SHIMONO M. Development of UAV-based river surface velocity measurement by STIV based on high-accurate image stabilization techniques[C]// E-Proceedings of the 36th IAHR World Congress. Hague, Netherlands, 2015: 28. [17] DETERT M. How to avoid and correct biased riverine surface image velocimetry[J]. Water Resources Research, 2021, 57(2): e2020WR027833. [18] ZHANG Y C, ZHUANG Z C, XIAO Y Z, et al. Rape plant NDVI 3D distribution based on structure from motion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 207-214. (in Chinese) 张艳超, 庄载椿, 肖宇钊, 等. 基于运动恢复结构算法的油菜NDVI三维分布[J]. 农业工程学报, 2015, 31(17): 207-214. [19] CAO L K. Development and application of large scale surface velocimetry[D]. Beijing: Tsinghua University, 2019. (in Chinese) 曹列凯. 大尺度表面流场测量技术研发与应用[D]. 北京: 清华大学, 2019. [20] LEWIS Q W, RHOADS B L. LSPIV measurements of two-dimensional flow structure in streams using small unmanned aerial systems: 1. Accuracy assessment based on comparison with stationary camera platforms and in-stream velocity measurements[J]. Water Resources Research, 2018, 54(10): 8000-8018. [21] CAO L K, DETERT M, LI D X. Airborne image velocimetry system and its application on river surface flow field measurement[J]. Journal of Basic Science and Engineering, 2020, 28(6): 1271-1280. (in Chinese) 曹列凯, DETERT M, 李丹勋. 无人机巡航测量河流表面流场的方法与应用[J]. 应用基础与工程科学学报, 2020, 28(6): 1271-1280. [22] CHEN Q G. High-frequency measurement of vortices in open channel flow with particle image velocimetry[D]. Beijing: Tsinghua University, 2014. (in Chinese) 陈启刚. 基于高频PIV的明渠湍流涡结构研究[D]. 北京: 清华大学, 2014. [23] THIELICKE W, STAMHUIS E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2(1): e30. [24] WESTERWEEL J, SCARANO F. Universal outlier detection for PIV data[J]. Experiments in Fluids, 2005, 39(6): 1096-1100.