Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1922-1929    DOI: 10.16511/j.cnki.qhdxxb.2022.21.012
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于无人机的长河段表面流场测量系统与应用
曹列凯1, DETERTMartin2,3, 李丹勋1
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084, 中国;
2. 瑞士苏黎世联邦理工学院 水利水文与冰川实验室, 苏黎世 8093, 瑞士;
3. 瑞士梅瑟尔勘察公司, 库尔 7000, 瑞士
Airborne image velocimetry system and its application to measure the surface flow fields of long river reaches
CAO Liekai1, DETERT Martin2,3, LI Danxun1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich 8093, Switzerland;
3. Meisser Surveying AG, Chur 7000, Switzerland
全文: PDF(15150 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对自然河流长河段表面流场测量, 建立了巡航模式下的无人机图像测速系统。首先在测流河段两岸布置地面控制点并向水面投掷示踪粒子, 无人机巡航拍摄示踪粒子沿程运动影像, 采用多视角运动结构恢复算法校正无人机影像, 并利用粒子图像测速算法计算局部河段流场, 最终拼接生成全河段流场。该系统应用于水电站引水渠和城市河流顺直河段, 得到了大范围、高空间分辨率和高覆盖度的全河段流场, 流场空间分布准确反映了测流区域的水体运动特征; 与声学Doppler剖面流速仪和旋桨流速仪结果相比, 断面流向速度变化趋势一致, 测流相对误差分别为±10%和±5%, 符合野外测量精度要求。该系统精度合理, 应用性强, 满足了长距离河段高空间分辨率流场测量需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹列凯
DETERTMartin
李丹勋
关键词 表面流场粒子图像测速无人机运动恢复结构    
Abstract:An airborne image velocimetry (AIV) system is developed for field measurements of long river reaches based on ground control points placed along both riversides and tracking particles seeded onto the water surface. Image frames are taken by an unmanned aerial vehicle in cruise flying mode and stabilized by orthorectification and georeferencing using structure from motion (SfM). Particle image velocimetry is applied to velocity field computation, resulting in a panoramic velocity field. Applications of AIV in urban and rural areas produce high coverage of velocity fields with a high spatial resolution, enabling a detailed description of the flow characteristics. The relative errors of the streamwise velocity components of AIV are ?0% and ?% compared with that of the acoustic Doppler current profiler (ADCP) and flow meter, respectively, which meet the accuracy requirements of field measurements. Overall, with its high reliability and strong applicability, the AIV system could conduct large-scale velocity field measurements with high spatial resolution in long river reaches.
Key wordssurface velocity field    particle image velocimetry    unmanned aerial vehicles    structure from motion
收稿日期: 2022-01-05      出版日期: 2022-11-10
基金资助:李丹勋, 教授, E-mail:lidx@tsinghua.edu.cn
引用本文:   
曹列凯, DETERTMartin, 李丹勋. 基于无人机的长河段表面流场测量系统与应用[J]. 清华大学学报(自然科学版), 2022, 62(12): 1922-1929.
CAO Liekai, DETERT Martin, LI Danxun. Airborne image velocimetry system and its application to measure the surface flow fields of long river reaches. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1922-1929.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.012  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1922
  
  
  
  
  
  
  
  
  
[1] KINOSHITA R. An analysis of the movement of flood waters by aerial photography, concerning characteristics of turbulence and surface flow[J]. Journal of the Japan Society of Photogrammetry, 1967, 6(1): 1-17.
[2] NAKAGAWA H, NEZU I. Structure of space-time correlations of bursting phenomena in an open-channel flow[J]. Journal of Fluid Mechanics, 1981, 104: 1-43.
[3] BRAS R L. Hydrology: An introduction to hydrologic science[M]. Reading, MA: Addison-Wesley, 1990.
[4] BANSAL M K. Dispersion in natural streams[J]. Journal of the Hydraulics Division, 1971, 97(11): 1867-1886.
[5] PICCARRETA M, FAULKNER H, BENTIVENGA M, et al. The influence of physico-chemical material properties on erosion processes in the badlands of Basilicata, Southern Italy[J]. Geomorphology, 2006, 81(3-4): 235-251.
[6] RULLI M C, ROSSO R. Modeling catchment erosion after wildfires in the San Gabriel Mountains of southern California[J]. Geophysical Research Letters, 2005, 32(19): L19401.
[7] WELBER M, LE COZ J, LARONNE J B, et al. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)[J]. Water Resources Research, 2016, 52(2): 1108-1126.
[8] LIN S X, ZENG Z Y, ZHU Y T, et al. Development and application of tangent sweeping radar flow measurement system[J]. Water Resources Informatization, 2019(1): 31-36. (in Chinese) 林思夏, 曾仲毅, 朱云通, 等. 侧扫雷达测流系统开发与应用[J]. 水利信息化, 2019(1): 31-36.
[9] FUJITA I, MUSTE M, KRUGER A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications[J]. Journal of Hydraulic Research, 1998, 36(3): 397-414.
[10] WEITBRECHT V, KVHN G, JIRKA G H. Large scale PIV-measurements at the surface of shallow water flows[J]. Flow Measurement and Instrumentation, 2002, 13(5-6): 237-245.
[11] STUMPF A, AUGEREAU E, DELACOURT C, et al. Photogrammetric discharge monitoring of small tropical mountain rivers: A case study at Rivière des Pluies, Réunion Island[J]. Water Resources Research, 2016, 52(6): 4550-4570.
[12] ZHONG Q, CHEN Q G, CAO L K, et al. An in-situ method for measuring surface topography and velocity field of flood flow discharged from high-dam reservoir[J]. Advances in Water Science, 2015, 26(6): 829-836. (in Chinese) 钟强, 陈启刚, 曹列凯, 等. 高坝泄洪水面曲面及流速场的原型测量方法[J]. 水科学进展, 2015, 26(6): 829-836.
[13] MUSTE M, FUJITA I, HAUET A. Large-scale particle image velocimetry for measurements in riverine environments[J]. Water Resources Research, 2008, 44(4): W00D19.
[14] CAO L K, WEITBRECHT V, LI D X, et al. Airborne feature matching velocimetry for surface flow measurements in rivers[J]. Journal of Hydraulic Research, 2021, 59(4): 637-650.
[15] DETERT M, JOHNSON E D, WEITBRECHT V. Proof-of-concept for low-cost and non-contact synoptic airborne river flow measurements[J]. International Journal of Remote Sensing, 2017, 38(8-10): 2780-2807.
[16] FUJITA I C, NOTOYA Y, SHIMONO M. Development of UAV-based river surface velocity measurement by STIV based on high-accurate image stabilization techniques[C]// E-Proceedings of the 36th IAHR World Congress. Hague, Netherlands, 2015: 28.
[17] DETERT M. How to avoid and correct biased riverine surface image velocimetry[J]. Water Resources Research, 2021, 57(2): e2020WR027833.
[18] ZHANG Y C, ZHUANG Z C, XIAO Y Z, et al. Rape plant NDVI 3D distribution based on structure from motion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 207-214. (in Chinese) 张艳超, 庄载椿, 肖宇钊, 等. 基于运动恢复结构算法的油菜NDVI三维分布[J]. 农业工程学报, 2015, 31(17): 207-214.
[19] CAO L K. Development and application of large scale surface velocimetry[D]. Beijing: Tsinghua University, 2019. (in Chinese) 曹列凯. 大尺度表面流场测量技术研发与应用[D]. 北京: 清华大学, 2019.
[20] LEWIS Q W, RHOADS B L. LSPIV measurements of two-dimensional flow structure in streams using small unmanned aerial systems: 1. Accuracy assessment based on comparison with stationary camera platforms and in-stream velocity measurements[J]. Water Resources Research, 2018, 54(10): 8000-8018.
[21] CAO L K, DETERT M, LI D X. Airborne image velocimetry system and its application on river surface flow field measurement[J]. Journal of Basic Science and Engineering, 2020, 28(6): 1271-1280. (in Chinese) 曹列凯, DETERT M, 李丹勋. 无人机巡航测量河流表面流场的方法与应用[J]. 应用基础与工程科学学报, 2020, 28(6): 1271-1280.
[22] CHEN Q G. High-frequency measurement of vortices in open channel flow with particle image velocimetry[D]. Beijing: Tsinghua University, 2014. (in Chinese) 陈启刚. 基于高频PIV的明渠湍流涡结构研究[D]. 北京: 清华大学, 2014.
[23] THIELICKE W, STAMHUIS E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2(1): e30.
[24] WESTERWEEL J, SCARANO F. Universal outlier detection for PIV data[J]. Experiments in Fluids, 2005, 39(6): 1096-1100.
[1] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[2] 吴林峰, 李春文. 尾座式垂直起降无人机在时变侧风干扰下的轨迹跟踪控制[J]. 清华大学学报(自然科学版), 2022, 62(1): 179-188.
[3] 冯乐乐, 吴玉新, 张海, 张扬, 岳光溪. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版), 2020, 60(6): 493-499.
[4] 陈启刚, 钟强. 粒子图像时间间隔对体视PIV测量误差的影响[J]. 清华大学学报(自然科学版), 2020, 60(10): 864-872.
[5] 陈宝华, 邓磊, 段岳圻, 陈志祥, 周杰. 三维重建中的多模型融合:克服光照和尺度影响[J]. 清华大学学报(自然科学版), 2016, 56(9): 969-973.
[6] 王浩, 陈槐, 李丹勋, 王兴奎. 水平前向插入式流速仪对流速场影响的实验研究[J]. 清华大学学报(自然科学版), 2016, 56(12): 1271-1277.
[7] 王乾,李清,程农,宋靖雁. 无侧滑角传感器的飞翼无人机抗侧风控制方法[J]. 清华大学学报(自然科学版), 2014, 54(4): 530-535.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn