Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1474-1483    DOI: 10.16511/j.cnki.qhdxxb.2022.21.015
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
球头铣刀铣削薄板件颤振预测
赵彤1, 蔡晨同1, 王永飞2, 卞鹏锡1, 张毅博2
1. 清华大学 机械工程系, 北京 100084;
2. 北京动力机械研究所, 北京 100074
Chatter stability prediction in ball-end milling of thin-plate parts
ZHAO Tong1, CAI Chentong1, WANG Yongfei2, BIAN Pengxi1, ZHANG Yibo2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Power Machinery Research Institute, Beijing 100074, China
全文: PDF(1667 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对球头铣刀铣削薄板件的颤振稳定性进行分析,建立了包含前一次切削时留下圆弧形刀痕对刀工接触区域影响的三维多自由度铣削动力学模型;进而通过平均切削力法辨识得到切削力系数,通过锤击实验得到刀具和工件各处的模态参数,利用全离散法得到工件各点处的稳定性叶瓣图(stability lobe diagram,SLD);最后进行了实验验证。理论计算和实验结果表明,工件各点处动力学特性的不同会导致各点处铣削稳定性预测结果不同,且在SLD中存在多个封闭的不稳定“孤岛”区域;不稳定“孤岛”区域与工件的模态刚度、模态频率、模态阻尼比有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵彤
蔡晨同
王永飞
卞鹏锡
张毅博
关键词 球头铣刀薄板件稳定性叶瓣图颤振    
Abstract:In ball-end milling of thin-plate parts, the chatter stability is analyzed using a three-dimensional multiple degrees of freedom milling dynamic model. The influence of the circular arc area left by the previous cutting on the tool– workpiece contact area is considered. The cutting force coefficients are identified by the average cutting force method. The modal parameters of the tool and workpiece are obtained via the hammer experiment. The stability lobe diagram (SLD) at each measurement point of the workpiece is obtained using the full-discretization method. Both theoretical and experimental results show that the variations in the dynamic characteristics at each point of the workpiece will change the SLD. Moreover, several closed unstable "island" regions are detected in the SLD. The unstable "island" region is attributed to the modal stiffness, modal frequency, and modal damping ratio of the workpiece.
Key wordsball-end milling cutter    thin-plate parts    stability lobe diagram (SLD)    chatter
收稿日期: 2022-01-19      出版日期: 2022-08-18
引用本文:   
赵彤, 蔡晨同, 王永飞, 卞鹏锡, 张毅博. 球头铣刀铣削薄板件颤振预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1474-1483.
ZHAO Tong, CAI Chentong, WANG Yongfei, BIAN Pengxi, ZHANG Yibo. Chatter stability prediction in ball-end milling of thin-plate parts. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1474-1483.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.015  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1474
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 秦赟. 薄壁件铣削颤振与刀具磨损状态监测研究[D]. 济南: 山东大学, 2021. QIN Y. Research on monitoring of milling chatter and tool wear condition for thin-walled workpiece[D]. Ji'nan: Shandong University, 2021. (in Chinese)
[2] 卢晓红, 杨昆, 栾贻函, 等. 薄壁铣削加工颤振稳定性研究综述[J]. 振动与冲击, 2021, 40(8): 50-61, 69. LU X H, YANG K, LUAN Y H, et al. A review on chatter stability in thin-wall milling[J]. Journal of Vibration and Shock, 2021, 40(8): 50-61, 69. (in Chinese)
[3] FENG J L, HOU N, JIAN Z, et al. An efficient method to predict the chatter stability of titanium alloy thin-walled workpieces during high-speed milling by considering varying dynamic parameters[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5407-5420.
[4] YAN B L, ZHU L D. Research on milling stability of thin-walled parts based on improved multi-frequency solution[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4): 431-441.
[5] GUO M X, ZHU L D, YAN B L, et al. Research on the milling stability of thin-walled parts based on the semi-discretization method of improved Runge-Kutta method[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(7-8): 2325-2342.
[6] REN S, LONG X H, MENG G. Dynamics and stability of milling thin walled pocket structure[J]. Journal of Sound and Vibration, 2018, 429: 325-347.
[7] GAO H N, LIU X L. Stability research considering non-linear change in the machining of titanium thin-walled parts[J]. Materials, 2019, 12(13): 2083.
[8] DING Y, ZHU L D. Investigation on chatter stability of thin-walled parts considering its flexibility based on finite element analysis[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12): 3173-3187.
[9] JIN X, SUN Y W, GUO Q, et al. 3D stability lobe considering the helix angle effect in thin-wall milling[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12): 2123-2136.
[10] BRAVO U, ALTUZARRA O, DE LACALLE L, et al. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15): 1669-1680.
[11] 李长城. 航空薄壁件高速铣削过程中的稳定性分析及控制[D]. 兰州: 兰州理工大学, 2020. LI C C. Stability analysis and control during high-speed milling of aerospace thin-walled parts[D]. Lanzhou: Lanzhou University of Technology, 2020. (in Chinese)
[12] LI W T, WANG L P, YU G. Chatter prediction in flank milling of thin-walled parts considering force-induced deformation[J]. Mechanical Systems and Signal Processing, 2022, 165: 108314.
[13] 周凯. 基于全离散法的铣削颤振预测方法优化及应用[D]. 北京: 清华大学, 2018. ZHOU K. The optimization and application of full- discretization method for predicting milling stability[D]. Beijing: Tsinghua University, 2018. (in Chinese)
[14] ZATARAIN M, MUÑOA J, PEIGNÉ G, et al. Analysis of the influence of mill helix angle on chatter stability[J]. CIRP Annals, 2006, 55(1): 365-368.
[15] ADETORO O B, SIM W M, WEN P H. An improved prediction of stability lobes using nonlinear thin wall dynamics[J]. Journal of Materials Processing Technology, 2010, 210(6-7): 969-979.
[16] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
[1] 江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn