Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1408-1416    DOI: 10.16511/j.cnki.qhdxxb.2022.21.017
  堆石混凝土 本期目录 | 过刊浏览 | 高级检索 |
石坝河水库堆石混凝土重力坝施工期工作性态仿真
程恒1, 周秋景1, 娄诗建3, 张国新1,2, 刘毅1,2, 雷峥琦1
1. 中国水利水电科学研究院, 北京 100038;
2. 流域水循环模拟与调控国家重点实验室, 北京 100038;
3. 遵义市水利水电勘测设计研究院有限责任公司, 遵义 563002
Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction
CHENG Heng1, ZHOU Qiujing1, LOU Shijian3, ZHANG Guoxin1,2, LIU Yi1,2, LEI Zhengqi1
1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China;
3. Zunyi Survey and Design Institute of Water Conservancy and Hydropower Co. Ltd., Zunyi 563002, China
全文: PDF(1687 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 依托贵州省仁怀市石坝河水库堆石混凝土重力坝,基于大坝设计资料与温度监测数据,对大坝自密实混凝土、堆石混凝土以及常态混凝土的关键热学参数进行反演。在此基础上,模拟大坝浇筑过程、混凝土硬化过程以及气象变化过程,采用有限元仿真方法进行大坝施工期全过程工作性态仿真计算,对大坝的温度场和应力场的分布和演化规律进行分析,评估大坝整体安全性。分析结果表明,仿真反演得到的坝体温度过程能够真实反映施工期坝体的温度变化规律,坝体内部一般3~5 d达到最高温度,水化热温升在4~7℃之间,夏季浇筑时最高温度约为35.0~39.5℃,冬季浇筑时最高温度约为25~28℃;除了大坝溢流坝段表面在低温季节局部拉应力较大外,其余部位应力均未超出混凝土的强度,大坝整体安全可以得到保障,说明堆石混凝土重力坝大仓面浇筑方式是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程恒
周秋景
娄诗建
张国新
刘毅
雷峥琦
关键词 堆石混凝土重力坝施工期仿真工作性态    
Abstract:Key thermal parameters of self-compacting, rock-filled, and normal concrete of the rock-filled concrete gravity dam of Shibahe Reservoir in Renhuai City, Guizhou Province, are inverted based on its design data and temperature-monitoring data. On this basis, the finite element simulation method is used to simulate the working behavior during the construction of the dam, including the dam pouring, concrete hardening, and meteorological change processes. Next, the distribution and evolution law of the temperature field and stress field of the dam are analyzed to evaluate the overall safety of the dam. The results show that the temperature process of the dam body obtained by simulation inversion can truly reflect the temperature variation of the dam body. The maximum temperature in the dam body is typically reached within 3—5 d, and the temperature rise of hydration heat is between 4—7 ℃. The maximum temperature of pouring concrete in summer is about 35.0—39.5 ℃, while that in winter is about 25—28 ℃. Although the partial tensile stress on the spillway section surface is large in the low-temperature season, the stress in other parts does not exceed the concrete strength, and the dam safety can be guaranteed. The result indicates that pouring concrete on the large warehouse surface of the rock-filled concrete gravity dam is feasible.
Key wordsrock-filled concrete    gravity dam    construction period    simulation    working behavior
收稿日期: 2022-01-17      出版日期: 2022-08-18
基金资助:周秋景,正高级工程师,E-mail:zhouqj@iwhr.com
引用本文:   
程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
CHENG Heng, ZHOU Qiujing, LOU Shijian, ZHANG Guoxin, LIU Yi, LEI Zhengqi. Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1408-1416.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.017  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1408
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 金峰, 安雪晖, 石建军, 等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报, 2005, 36(11): 1347-1352. JIN F, AN X H, SHI J J, et al. Study on rock-fill concrete dam[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1347-1352. (in Chinese)
[2] AN X H, WU Q, JIN F, et al. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China[J]. Cement and Concrete Composites, 2014, 54: 89-99.
[3] 安雪晖, 金峰, 石建军, 等. 自密实混凝土充填堆石体试验研究[J]. 混凝土, 2005(1): 3-6, 42. AN X H, JIN F, SHI J J, et al. Experimental study of self-compacting concrete filled prepacked rock[J]. Concrete, 2005(1): 3-6, 42. (in Chinese)
[4] 张文胜, 何涛洪, 张全意, 等. 堆石混凝土重力坝设计创新与应用实践[J]. 红水河, 2020, 39(2): 10-14. ZHANG W S, HE T H, ZHANG Q Y, et al. Design innovation and application practice of rockfill concrete gravity dam[J]. Hongshui River, 2020, 39(2): 10-14. (in Chinese)
[5] 李成业, 徐瑛丹. 堆石混凝土施工技术在浯溪口大坝工程中的应用研究[J]. 水利建设与管理, 2015, 35(12): 20-23. LI C Y, XU Y D. Research on applying rock-fill concrete construction technology in Wuxikou dam project[J]. Water Conservancy Construction and Management, 2015, 35(12): 20-23. (in Chinese)
[6] 曾旭, 何涛洪, 张全意, 等. 堆石混凝土技术在打鼓台水库的应用与探索[J]. 水利规划与设计, 2019(8): 94-96, 127. ZENG X, HE T H, ZHANG Q Y, et al. Application and exploration of rockfill concrete technology in drumming reservoir[J]. Water Resources Planning and Design, 2019(8): 94-96, 127. (in Chinese)
[7] 张国新, 杨波, 张景华. RCC拱坝的封拱温度与温度荷载研究[J]. 水利学报, 2011, 42(7): 812-818. ZHANG G X, YANG B, ZHANG J H. Grouting temperature and thermal load of RCC arch dam[J]. Journal of Hydraulic Engineering, 2011, 42(7): 812-818. (in Chinese)
[8] LIU C N, AHN C R, AN X H, et al. Life-cycle assessment of concrete dam construction: Comparison of environmental impact of rock-filled and conventional concrete[J]. Journal of Construction Engineering and Management, 2013, 139(12): A4013009.
[9] 何世钦, 陈宸, 周虎, 等. 堆石混凝土综合性能的研究现状[J]. 水力发电学报, 2017, 36(5): 10-18. HE S Q, CHEN C, ZHOU H, et al. Current research on comprehensive properties of rock filled concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(5): 10-18. (in Chinese)
[10] ZHANG X F, LIU Q, ZHANG X, et al. A study on adiabatic temperature rise test and temperature stress simulation of rock-fill concrete[J]. Mathematical Problems in Engineering, 2018, 2018: 3964926.
[11] JIN F, ZHOU H, AN X H. Research on rock-filled concrete dam[J]. International Journal of Civil Engineering, 2019, 17(4): 495-500.
[12] 赵运天, 解宏伟, 周虎. 堆石混凝土拱坝温度应力仿真及温控措施研究[J]. 水利水电技术, 2019, 50(1): 90-97. ZHAO Y T, XIE H W, ZHOU H. Study on simulation of temperature stress and temperature control measures for rock-filled concrete arch dam[J]. Water Resources and Hydropower Engineering, 2019, 50(1): 90-97. (in Chinese)
[13] 王辉, 马嘉均, 周虎, 等. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346. WANG H, MA J J, ZHOU H, et al. Mechanical behavior of rock-filled concrete with uniaxial compression[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(2): 339-346. (in Chinese)
[14] 杨丽群, 曾旭. 堆石混凝土坝材料性能探讨[J]. 红水河, 2021, 40(2): 41-46, 61. YANG L Q, ZENG X. Discussion on material properties of rock-fill concrete dam[J]. Hongshui River, 2021, 40(2): 41-46, 61. (in Chinese)
[15] 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之一)[J]. 水利水电技术, 2013, 44(1): 31-35, 44. ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures(Part I)[J]. Water Resources and Hydropower Engineering, 2013, 44(1): 31-35, 44. (in Chinese)
[16] 周秋景, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之二)[J]. 水利水电技术, 2013, 44(9): 39-43, 48. ZHOU Q J, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part II)[J]. Water Resources and Hydropower Engineering, 2013, 44(9): 39-43, 48. (in Chinese)
[17] 张磊, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之三)[J]. 水利水电技术, 2014, 45(1): 52-55, 76. ZHANG L, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part III)[J]. Water Resources and Hydropower Engineering, 2014, 45(1): 52-55, 76. (in Chinese)
[18] 金峰, 张国新, 张全意. 绿塘堆石混凝土拱坝施工期温度分析[J]. 水利学报, 2020, 51(6): 749-756. JIN F, ZHANG G X, ZHANG Q Y. Temperature analysis for Lyutang RFC arch dam in construction period[J]. Journal of Hydraulic Engineering, 2020, 51(6): 749-756. (in Chinese)
[19] 高继阳, 张国新, 杨波. 堆石混凝土坝温度应力仿真分析及温控措施研究[J]. 水利水电技术, 2016, 47(1): 31-35, 97. GAO J Y, ZHANG G X, YANG B. Study on simulative analysis of temperature stress and temperature control measures for rock-filled concrete dam[J]. Water Resources and Hydropower Engineering, 2016, 47(1): 31-35, 97. (in Chinese)
[1] 徐小蓉, 何涛洪, 雷峥琦, 张全意, 黎聪, 金峰. 超长坝段堆石混凝土重力坝蓄水运行安全评价[J]. 清华大学学报(自然科学版), 2022, 62(9): 1375-1387.
[2] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[3] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[4] 王辉, 马嘉均, 周虎, 何世钦, 金峰. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346.
[5] 谭尧升, 陈文夫, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 裴磊, 梁程, 尚超, 杨鹏博, 姚孟迪, 李向前, 李俊平. 特高拱坝施工期多维信息模型研究与实践[J]. 清华大学学报(自然科学版), 2022, 62(12): 1884-1895.
[6] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[7] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网运行准实时评估系统研究与开发[J]. 清华大学学报(自然科学版), 2022, 62(11): 1816-1822.
[8] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[9] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[10] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
[11] 王飞, 刘金飞, 尹习双, 谭尧升, 周天刚, 杨支跃, 冯博, 杨小龙. 高拱坝智能进度仿真理论与关键技术[J]. 清华大学学报(自然科学版), 2021, 61(7): 756-767.
[12] 宋雨, 张伟, 苗新元, 张志国, 龚胜平. 可回收火箭动力着陆段在线制导算法[J]. 清华大学学报(自然科学版), 2021, 61(3): 230-239.
[13] 丁莹, 张健钦, 杨木, 宫鹏, 贾礼朋, 邓少存. 新冠疫情发生城市仿真模型及防控措施评价——以武汉市为例[J]. 清华大学学报(自然科学版), 2021, 61(12): 1452-1461.
[14] 聂浩哲, 沈瑜, 赵争鸣, 文武松, 袁立强. 四端口电力电子变压器高压交流端口的低电压穿越功能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1097-1105.
[15] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn