Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1668-1674    DOI: 10.16511/j.cnki.qhdxxb.2022.21.018
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
HTR-PM600新燃料贮存容器跌落冲击安全性能
郝予琛, 王金华, 王海涛, 刘兵, 李悦
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Safety performance of HTR-PM600 fresh fuel storage canister under drop impact
HAO Yuchen, WANG Jinhua, WANG Haitao, LIU Bing, LI Yue
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(10408 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 贮存容器是核电厂燃料贮存系统的关键设备之一,在提升过程中可能因为机械故障直接跌落至地面导致容器受损与燃料泄露,因此新燃料贮存容器在设计阶段必须进行跌落安全测试。该文以HTR-PM600新燃料贮存容器为研究对象,采用FEM-DEM耦合方法模拟内部球床运动规律,计算燃料贮存容器在事故跌落工况下可能产生的最大破坏。计算结果表明:新燃料贮存容器在15 m竖直跌落工况下包容边界不会发生破损,楼板不会被穿透,该燃料容器结构设计满足安全要求;冲击载荷下球床压力使得薄壁容器侧板产生最大35.26 mm径向膨胀位移量;燃料元件与包容薄板最大瞬时相互作用力为6.295 kN,远小于燃料元件破坏强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝予琛
王金华
王海涛
刘兵
李悦
关键词 HTR-PM600新燃料贮存容器球床自由跌落安全分析    
Abstract:Fresh fuel storage container is key equipment in the fuel storage system in nuclear power plants.During hoisting,it may fall directly to the ground,thus damaging the canister and leaking the fuel element due to mechanical failure.Therefore,the safety performance of a fresh fuel storage container must be verified under the drop impact.In this paper,the HTR-PM600 fresh fuel storage canister is selected as the objective,and the FEM-DEM coupling method is used to simulate the movement law of the pebble bed.Subsequently,the maximum damage to the fuel storage canister under an accidental drop impact is calculated.The result shows that the containment boundary of the new fuel storage canister will not be destroyed under the 15-m drop condition,and the floor will not be penetrated;thus,the structural design meets the safety requirements.Under impact loading,the side plate of the thin-wall canister has a 35.26-mm expansion in the radial direction due to the interface force from the pebble bed.The maximum interaction force between the fuel element and the containment boundary is 6.295 kN,far less than the crush strength of the HTR-PM fuel element.
Key wordsHTR-PM600    fresh fuel storage canister    pebble bed    free drop    safety analysis
收稿日期: 2022-02-23      出版日期: 2022-09-03
基金资助:王金华,研究员,E-mail:wangjinhua@tsinghua.edu.cn;李悦,副研究员,E-mail:lyue@tsinghua.edu.cn
引用本文:   
郝予琛, 王金华, 王海涛, 刘兵, 李悦. HTR-PM600新燃料贮存容器跌落冲击安全性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1668-1674.
HAO Yuchen, WANG Jinhua, WANG Haitao, LIU Bing, LI Yue. Safety performance of HTR-PM600 fresh fuel storage canister under drop impact. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1668-1674.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.018  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1668
  
  
  
  
  
  
  
  
  
  
  
[1] 清华新闻网.华能石岛湾高温气冷堆示范工程并网发电[N/OL].(2021-12-21). https://www.tsinghua.edu.cn/info/1182/90247.htm. Tsinghua NEWS. China Huaneng starts 200 MW gas-cooled nuclear reactor in China[N/OL].(2021-12-21). https://www.tsinghua.edu.cn/info/1182/90247.htm.(in Chinese)
[2] ZHANG Z Y, DONG Y J, LI F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant:An engineering and technological innovation[J]. Engineering, 2016, 2(1):112-118.
[3] 徐超.基于安全分析的乏燃料运输容器关键技术研究[D].杭州:浙江大学, 2012. XU C. Research on the key technologies of safety design for spent fuel transportation cask[D]. Hangzhou:Zhejiang University, 2012.(in Chinese)
[4] 杨星团,刘志勇,胡文平,等. HTR-10堆芯球流运动的唯象学DEM模拟[J].原子能科学技术, 2013, 47(12):2231-2237. YANG X T, LIU Z Y, HU W P, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12):2231-2237.(in Chinese)
[5] 王文俊,姜胜耀,杨星团,等.二维双区球流运动唯象方法的数值模拟[J].原子能科学技术, 2013, 47(10):1713-1717. WANG W J, JIANG S Y, YANG X T, et al. Numerical simulation on pebble dynamics of two-dimensional two-region pebble-bed reactor using phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(10):1713-1717.(in Chinese)
[6] LIN M S, WANG J H, WU B, et al. Dynamic analysis of dry storage canister and the spent fuels inside under vertical drop in HTR-PM[J]. Annals of Nuclear Energy, 2021, 154:108030.
[7] 刘翔. HTR-PM乏燃料贮罐跌落工况的安全性分析与计算[D].北京:清华大学, 2015. LIU X. The theoretical and computational analysis for the drop events of HTR-PM spent fuel storage canister[D]. Beijing:Tsinghua University, 2015.(in Chinese)
[8] American Society of Mechanical Engineers. Section II:Materials:2015 ASME boiler and pressure vessel code an international code:Part D properties (customary)[R]. New York:The American Society of Mechanical Engineers, 2015.
[9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.紧固件机械性能不锈钢螺栓、螺钉和螺柱:GB/T 3098.6-2014[S].北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardi-zation Administration. Mechanical properties of fasteners:Stainless steel bolts, screws and studs:GB/T 3098.6-2014[S]. Beijing:Standards Press of China, 2014.(in Chinese)
[10] USNRC. Stress analysis of closure bolts for shipping casks:NUREG/CR-6007[R]. Washington:USNRC, 1993.
[11] Livermore Software Technology Corporation. LS-DYNA® keyword user's manual:Volume II:Material models[R]. Livermore:LSTC, 2019.
[12] CUNDALL P A, STRACK O D L. Discussion:A discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3):331-336.
[13] 孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社, 2009. SUN Q C, WANG G Q. Introduction to discrete element method[M]. Beijing:Science Press, 2009.(in Chinese)
[14] LIN M S, LI Y. Analysis of the interactions between spent fuel pebble bed and storage canister under impact loading[J]. Nuclear Engineering and Design, 2020, 361:110548.
[15] KUGELER K, ZHANG Z Y. Modular high-temperature gas-cooled reactor power plant[M]. Berlin:Springer, 2019.
[16] 国家能源局.核电厂厂房设计荷载规范:NB/T 20105-2012[S].北京:原子能出版社, 2012. National Energy Administration. Load code for the design of nuclear power plants building structures:NB/T 20105-2012[S]. Beijing:Atomic Energy Press, 2012.(in Chinese)
[17] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the people's Republic of China. Code for design of concrete structures:GB 50010-2010[S]. Beijing:China Architecture&Building Press, 2011.(in Chinese)
[1] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[2] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[3] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[4] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[5] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
[6] 刘洪冰, 黄岸, 常保华, 王力, 都东. 球床堆燃料元件串列提升碰撞过程动力学特征[J]. 清华大学学报(自然科学版), 2016, 56(9): 1003-1008,1015.
[7] 佘晓丽, 赵纪元, 杨健. 基于极大代数的安全系统失效传播分析[J]. 清华大学学报(自然科学版), 2016, 56(3): 318-323.
[8] 任成, 杨星团, 李聪新, 孙艳飞, 刘志勇. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55(9): 991-997.
[9] 郝琛, 李富, 郭炯. 球床式高温气冷堆球流混流的模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 624-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn