Monocular method for parameter estimation of symmetric-inertia uncooperative targets
CHI Hao1, LIU Yu2, CHEN Ken1, FENG Weichun2, ZHANG Jiwen1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; 2. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
摘要针对失效卫星等空间非合作目标缺少信息交互,无法直接获取旋转运动参数与动力学参数的问题,提出一种惯量对称非合作目标参数的单目估计方法。首先建立动力学参数化模型,并推出模型几何参数与目标星参数的解析关系;然后在此基础上以单目相机图像作为输入,通过对实时定位与建图(simultaneous localization and mapping,SLAM)算法前端的含噪位姿结果进行多阶滤波,对角速度向量进行双锥体拟合的方法;最后实现目标星旋转运动学参数和动力学参数的全局最优估计。仿真结果表明,该方法能够快速、高精度地实现参数估计,相对误差小于0.9%。
Abstract:A monocular method is proposed to estimate the parameters of uncooperative targets whose inertia is equal crosswise, to solve the problem that uncooperative targets without communication, such as failed satellites, cannot provide their rotational motion parameters or dynamic parameters. First, a dynamic parameter model is given, and then an analytic expression for target parameters is created. On this basis, taking the monocular image sequence as an input, the noisy result of simultaneous localization and mapping (SLAM) techniques visual odometry is filtered multiple times, and rotational speed vectors are fitted to a double-cone model. Eventually, targets' rotational kinetic and dynamic global optimal parameters can be determined. The simulation results demonstrate that the method can estimate parameters efficiently and accurately, and the relative errors are less than 0.9%.
[1] OPROMOLLA R, FASANO G, RUFINO G, et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93: 53-72. [2] LICHTER M D, DUBOWSKY S. Estimation of state, shape, and inertial parameters of space objects from sequences of range images[C]// Proceedings of SPIE 5267, Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision. Providence, USA: SPIE, 2003: 194-205. [3] JIANG C C, HU Q L. Constrained Kalman filter for uncooperative spacecraft estimation by stereovision[J]. Aerospace Science and Technology, 2020, 106: 116133. [4] FENG Q, ZHU Z H, PAN Q, et al. Pose and motion estimation of unknown tumbling spacecraft using stereoscopic vision[J]. Advances in Space Research, 2018, 62(2): 359-369. [5] 张世杰, 曹喜滨, 陈闽. 非合作航天器间相对位姿的单目视觉确定算法[J]. 南京理工大学学报(自然科学版), 2006, 30(5): 564-568. ZHANG S J, CAO X B, CHEN M. Monocular vision-based relative pose parameters determination for non-cooperative spacecrafts[J]. Journal of Nanjing University of Science and Technology, 2006, 30(5): 564-568. (in Chinese) [6] AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3): 634-649. [7] CAPUANO V, KIM K, HARVARD A, et al. Monocular- based pose determination of uncooperative space objects[J]. Acta Astronautica, 2020, 166: 493-506. [8] 王梓, 孙晓亮, 李璋, 等. 基于Transformer模型的卫星单目位姿估计方法. 航空学报, (2021-03-10). http://kns.cnki.net/kcms/detail/11.1929.V.20210309.1408.018.html. WANG Z, SUN X L, LI Z, et al. Transformer based monocular satellite pose estimation. Acta Aeronautica et Astronautica Sinica, (2021-03-10). http://kns.cnki.net/kcms/detail/11.1929.V.20210309.1408.018.html. (in Chinese) [9] 刘智远, 郭延宁, 梁维奎, 等. 基于点云的空间非合作目标初始相对位姿获取[J]. 宇航学报, 2020, 41(10): 1314-1321. LIU Z Y, GUO Y N, LIANG W K, et al. Point cloud based initial relative pose acquiring process for relative pose estimation of non-cooperative object in space[J]. Journal of Astronautics, 2020, 41(10): 1314-1321. (in Chinese) [10] 蔡晗, 张景瑞, 翟光, 等. GEO非合作目标超近距相对位姿视觉测量[J]. 宇航学报, 2015, 36(6): 715-722. CAI H, ZHANG J R, ZHAI G, et al. Relative pose determination for GEO non-cooperative spacecraft under the ultra-close distance[J]. Journal of Astronautics, 2015, 36(6): 715-722. (in Chinese) [11] LIU Y, XIE Z W, ZHANG Q, et al. A new approach for the estimation of non-cooperative satellites based on circular feature extraction[J]. Robotics and Autonomous Systems, 2020, 129: 103532. [12] JIA B X, CHEN B, LIANG J, et al. Efficient recognition for non-cooperative target with symmetric feature[C]// 2019 14th IEEE Conference on Industrial Electronics and Applications. Xi’an, China: IEEE, 2019: 927-931. [13] SEGAL S, CARMI A, GURFIL P. Stereovision-based estimation of relative dynamics between noncooperative satellites: Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 568-584. [14] 胡启阳, 王大轶. 采用双目视觉的非合作空间目标相对导航与惯性参数辨识方法[J]. 宇航学报, 2020, 41(11): 1410-1417. HU Q Y, WANG D Y. Relative navigation and identification of inertia parameters of non-cooperative space target based on stereo vision[J]. Journal of Astronautics, 2020, 41(11): 1410-1417. (in Chinese) [15] 郭新程, 孟中杰, 黄攀峰. 采用单目视觉的非合作目标星状态估计[J]. 宇航学报, 2019, 40(10): 1243-1250. GUO X C, MENG Z J, HUANG P F. State estimation of a non-cooperative target satellite using monocular vision[J]. Journal of Astronautics, 2019, 40(10): 1243-1250. (in Chinese) [16] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. [17] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998. ZHANG R W. Dynamics and control of satellite orbit attitude[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1998. (in Chinese) [18] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 33(5): 1255-1262.