Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1500-1507    DOI: 10.16511/j.cnki.qhdxxb.2022.21.025
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识
武诗睿, 吴丹
清华大学 机械工程系, 北京 100084
Parameter identification for the LuGre friction model based on an area-specific shape analysis of the friction torque-velocity curve
WU Shirui, WU Dan
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5511 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 LuGre模型可以较为全面地描述动态摩擦现象,但引入了不可观测的鬃毛变形,给LuGre摩擦参数的高效准确辨识带来技术挑战。传统的LuGre摩擦参数辨识法需要运动系统采用力矩控制,且辨识工作量较大。传统方法不再适用一些系统,如多自由度机械臂这种常采用位置控制模式的系统。该文提出了一种基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识法。定义形状因子来定量表示Stribeck峰和迟滞环线的形状特征,并用其辅助辨识,可得到比粒子群算法局部最优解更好的辨识结果。仿真分析和机械臂辨识实验结果表明:与纯PSO法相比,该方法的辨识实验量更小,LuGre摩擦参数辨识更准确,关节力矩预测精度更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武诗睿
吴丹
关键词 LuGre摩擦模型参数辨识机械臂    
Abstract:The LuGre model is an advanced friction model that describes dynamic friction characteristics. However, the imported unobservable bristle deformation complicates accurate, efficient identification of the model parameters. The traditional LuGre parameter identification method requires the motion system to use torque control and requires a significant computational load. The traditional LuGre parameter identification method is not applicable to some systems, such as multiple degree-of-freedom manipulators, that use the position control mode. Therefore, this paper presents a modified LuGre parameter identification method based on an area-specific analysis of the friction torque-velocity curve. Shape factors are defined to quantify the shape features of the Stribeck peak and the hysteresis loop which are then used for the LuGre parameter identification. The identification result is better than the local optimal solution of the PSO method. Simulations and hardware identification tests on a manipulator verify the effectiveness of this method, which requires fewer experiments, has better parameter identification accuracy and more accurately predicts the manipulator joint torque than the pure PSO method.
Key wordsLuGre friction model    parameter identification    manipulator
收稿日期: 2022-03-25      出版日期: 2022-08-18
基金资助:吴丹,教授,E-mail:wud@tsinghua.edu.cn
引用本文:   
武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
WU Shirui, WU Dan. Parameter identification for the LuGre friction model based on an area-specific shape analysis of the friction torque-velocity curve. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1500-1507.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.025  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1500
  
  
  
  
  
  
  
  
  
  
  
  
[1] DING L, WU H T, YAO Y, et al. Dynamic model identification for 6-DOF industrial robots[J]. Journal of Robotics, 2015, 2015: 471478.
[2] BOMPOS N A, ARTEMIADIS P K, OIKONOMOPOULOS A S, et al. Modeling, full identification and control of the Mitsubishi PA-10 robot arm[C]//Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland: IEEE, 2007: 1-6.
[3] WERNHOLT E, GUNNARSSON S. Nonlinear identification of a physically parameterized robot model[J]. IFAC Proceedings Volumes, 2006, 39(1): 143-148.
[4] HAN Y, WU J H, LIU C, et al. An iterative approach for accurate dynamic model identification of industrial robots[J]. IEEE Transactions on Robotics, 2020, 36(5): 1577-1594.
[5] WAHRBURG A, KLOSE S, CLEVER D, et al. Modeling speed-, load-, and position-dependent friction effects in strain wave gears[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 2095-2102.
[6] WOLF S, ISKANDAR M. Extending a dynamic friction model with nonlinear viscous and thermal dependency for a motor and harmonic drive gear[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 783-790.
[7] SIMONI L, BESCHI M, LEGNANI G, et al. On the inclusion of temperature in the friction model of industrial robots[J]. IFAC-PapersOnLine, 2017, 50(1): 3482-3487.
[8] JOHANASTROM K, CANUDAS-DE-WIT C. Revisiting the LuGre friction model[J]. IEEE Control Systems, 2008, 28(6): 101-114.
[9] DE WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
[10] OLSSON H, ÅSTRÖM K J, DE WIT C C, et al. Friction models and friction compensation[J]. European Journal of Control, 1998, 4(3): 176-195.
[11] GANDHI P S, GHORBEL F H, DABNEY J. Modeling, identification, and compensation of friction in harmonic drives[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002: 160-166.
[12] IRAKOZE R, YAKOUB K, KADDOURI A. Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm[C]//2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). Halifax, NS, Canada: IEEE, 2015: 1451-1457.
[13] 陈良波. 2自由度机器人转动关节LuGre摩擦模型参数辨识[D]. 泉州: 华侨大学, 2013. CHEN L B. Parameters identification of LuGre friction model of revolute joints in a 2-degree-of-freedom robot[D]. Quanzhou: Huaqiao University, 2013. (in Chinese)
[14] DUAN H B, WANG D B, ZHU J Q, et al. Parameter identification of LuGre friction model for flight simulation servosystem based on ant colony algorithm[J]. Transactions of Nanjing University of Aeronautics & Astronau, 2004(3): 179-183.
[15] 李志杰, 蔡力钢, 刘志峰. 加加速度连续的S型加减速规划算法[J]. 计算机集成制造系统, 2019, 25(5): 1192-1201. LI Z J, CAI L G, LIU Z F. S type acceleration & deceleration fast planning algorithm with continuous jerk[J]. Computer Integrated Manufacturing Systems, 2019, 25(5): 1192-1201. (in Chinese)
[16] SWEVERS J, VERDONCK W, DE SCHUTTER J. Dynamic model identification for industrial robots[J]. IEEE Control Systems, 2007, 27(5): 58-71.
[17] MAGRINI E, FLACCO F, DE LUCA A. Estimation of contact forces using a virtual force sensor[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, USA: IEEE, 2014: 2126-2133.
[1] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[2] 李亚昕, 王国磊, 张剑辉, 田鑫亮, 安静, 陈恳. 基于碰撞反馈的冗余机器人避障规划算法[J]. 清华大学学报(自然科学版), 2022, 62(3): 408-415.
[3] 胡奎,张继文,董云飞,吴丹. 针对关节限位优化的7自由度机械臂逆运动学解法[J]. 清华大学学报(自然科学版), 2020, 60(12): 1007-1015.
[4] 赵彤, 郭俊杰, 吕玉红. 预紧力与非线性作用的螺栓结合部动力学特性[J]. 清华大学学报(自然科学版), 2019, 59(9): 772-779.
[5] 胡从军, 于广, 王立平. 基于3P(4R)S主轴头的五轴混联机床的参数辨识算法[J]. 清华大学学报(自然科学版), 2019, 59(12): 1029-1038.
[6] 田斯慧, 唐晓强, 代海林, 李煜琦. 基于摩擦力的机械臂零重力系统卸载性能[J]. 清华大学学报(自然科学版), 2019, 59(10): 831-837.
[7] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.
[8] 张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
[9] 刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn