Abstract:The LuGre model is an advanced friction model that describes dynamic friction characteristics. However, the imported unobservable bristle deformation complicates accurate, efficient identification of the model parameters. The traditional LuGre parameter identification method requires the motion system to use torque control and requires a significant computational load. The traditional LuGre parameter identification method is not applicable to some systems, such as multiple degree-of-freedom manipulators, that use the position control mode. Therefore, this paper presents a modified LuGre parameter identification method based on an area-specific analysis of the friction torque-velocity curve. Shape factors are defined to quantify the shape features of the Stribeck peak and the hysteresis loop which are then used for the LuGre parameter identification. The identification result is better than the local optimal solution of the PSO method. Simulations and hardware identification tests on a manipulator verify the effectiveness of this method, which requires fewer experiments, has better parameter identification accuracy and more accurately predicts the manipulator joint torque than the pure PSO method.
武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
WU Shirui, WU Dan. Parameter identification for the LuGre friction model based on an area-specific shape analysis of the friction torque-velocity curve. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1500-1507.
[1] DING L, WU H T, YAO Y, et al. Dynamic model identification for 6-DOF industrial robots[J]. Journal of Robotics, 2015, 2015: 471478. [2] BOMPOS N A, ARTEMIADIS P K, OIKONOMOPOULOS A S, et al. Modeling, full identification and control of the Mitsubishi PA-10 robot arm[C]//Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland: IEEE, 2007: 1-6. [3] WERNHOLT E, GUNNARSSON S. Nonlinear identification of a physically parameterized robot model[J]. IFAC Proceedings Volumes, 2006, 39(1): 143-148. [4] HAN Y, WU J H, LIU C, et al. An iterative approach for accurate dynamic model identification of industrial robots[J]. IEEE Transactions on Robotics, 2020, 36(5): 1577-1594. [5] WAHRBURG A, KLOSE S, CLEVER D, et al. Modeling speed-, load-, and position-dependent friction effects in strain wave gears[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 2095-2102. [6] WOLF S, ISKANDAR M. Extending a dynamic friction model with nonlinear viscous and thermal dependency for a motor and harmonic drive gear[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 783-790. [7] SIMONI L, BESCHI M, LEGNANI G, et al. On the inclusion of temperature in the friction model of industrial robots[J]. IFAC-PapersOnLine, 2017, 50(1): 3482-3487. [8] JOHANASTROM K, CANUDAS-DE-WIT C. Revisiting the LuGre friction model[J]. IEEE Control Systems, 2008, 28(6): 101-114. [9] DE WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425. [10] OLSSON H, ÅSTRÖM K J, DE WIT C C, et al. Friction models and friction compensation[J]. European Journal of Control, 1998, 4(3): 176-195. [11] GANDHI P S, GHORBEL F H, DABNEY J. Modeling, identification, and compensation of friction in harmonic drives[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2002: 160-166. [12] IRAKOZE R, YAKOUB K, KADDOURI A. Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm[C]//2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). Halifax, NS, Canada: IEEE, 2015: 1451-1457. [13] 陈良波. 2自由度机器人转动关节LuGre摩擦模型参数辨识[D]. 泉州: 华侨大学, 2013. CHEN L B. Parameters identification of LuGre friction model of revolute joints in a 2-degree-of-freedom robot[D]. Quanzhou: Huaqiao University, 2013. (in Chinese) [14] DUAN H B, WANG D B, ZHU J Q, et al. Parameter identification of LuGre friction model for flight simulation servosystem based on ant colony algorithm[J]. Transactions of Nanjing University of Aeronautics & Astronau, 2004(3): 179-183. [15] 李志杰, 蔡力钢, 刘志峰. 加加速度连续的S型加减速规划算法[J]. 计算机集成制造系统, 2019, 25(5): 1192-1201. LI Z J, CAI L G, LIU Z F. S type acceleration & deceleration fast planning algorithm with continuous jerk[J]. Computer Integrated Manufacturing Systems, 2019, 25(5): 1192-1201. (in Chinese) [16] SWEVERS J, VERDONCK W, DE SCHUTTER J. Dynamic model identification for industrial robots[J]. IEEE Control Systems, 2007, 27(5): 58-71. [17] MAGRINI E, FLACCO F, DE LUCA A. Estimation of contact forces using a virtual force sensor[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, USA: IEEE, 2014: 2126-2133.